

Ref: CWWDA/AFD/PQ/W3/2022-2023/70

Date: 23rd September, 2024

To: All Bidders,

DESIGN, BUILD AND OPERATE OF MWACHE WATER TREATMENT PLANT AND ASSOCIATED WORKS - CONTRACT NUMBER: CWWDA/AFD/PQ/W3/2022-2023

RE: GEOTECHNICAL INVESTIGATION REPORT - WTP

Further to the Invitation for Bids issued on 19thAugust 2024 for the above referenced Contract, please find a Geotechnical Investigation Report for Mwache Treatment Plant (WTP) attached as additional information for your action.

Eng. Martin Tsuma Ag. CHIEF EXECUTIVE OFFICER

Encl. Documents: Geotechnical Investigation Report for Mwache Treatment Plant (WTP)

P.O. Box 90417 - 80100 Mombasa Kenya Tel: No. 041 - 2315230 0731 231523 Email: info@cwwda.go.ke Website: www.cwwda.go.ke complaints@cwwda.co.ke

Republic of Kenya Coast Water Works Development Agency

IMPROVEMENT OF DRINKING WATER AND SANITATION SYSTEMS IN MOMBASA : MWACHE CKE 1103

Preliminary Design, Tender Documents, Safeguards (ESIA and RAP) Reports and Construction Supervision of Mwache Water Treatment Plant

Contract No: CWSB/AFD/MWCE/C/4/2017

GEOTECHNICAL REPORT

SEPTEMBER 2021

SEPTEMBER 2021 / 877 3361

Preliminary Design, Tender Documents, Safeguards (ESIA and RAP) and Construction Supervision of Mwache Water Treatment Plant

REPUBLIC OF KENYA - COAST WATER WORKS DEVELOPMENT AGENCY

Erreur ! Utilisez l'onglet Accueil pour appliquer PdG_Nature_document au texte que vous souhaitez faire apparaître ici.

VERSION	DESCRIPTION	PREPARED BY	APPROVED BY	DATE				
01	Geotechnical Report	Z. Kuria	GFY					
ARTELIA - Water, Climate and Solid Waste 6 rue de Lorraine – 38130 Echirolles – FRANCE – TEL : +33 (0)4 76 33 40 00								
	MANGAT, I.B. PATEL LIMITED – Consulting Engineers P.O. Box 48674, 00100 – GPO - Nairobi, KENYA – TEL : +254 20 2710500							

TABLE OF CONTENTS

1.0	INTROD	DUCTION						
	1.1	PREAMBLE1						
	1.2	OBJECTIVES						
	1.3	SCOPE1						
	1.4	SITE LOCATION						
2.0	FIELDW	ORK2						
	2.1	GENERAL						
	2.2	SETTING OUT						
	2.3	METHODOLOGY						
	2.3.1	Rig and Accessories						
	2.3.2	Standard Penetration Test (SPT)3						
	2.3.3	Sampling						
	2.3.4							
	2.3.5							
3.0	SUBSUR	FACE CONDITIONS						
	3.1	LIMITATIONS OF THE SAMPLING METHOD						
	3.2	STRATIGRAPHY						
	3.2.1	Silty Sand – Overburden Soil4						
	3.2.2	Sandstone – Bedrock						
4.0	ANALYS	IS AND DISCUSSION OF TEST RESULTS						
	4.1	IN-SITU TESTS4						
	4.1.1	Standard Penetration Tests (SPT)4						
	4.1.2	Lugeon Permeability Test4						
	4.2	LABORATORY TESTS						
	4.2.1	Atterberg Limits6						
	4.2.2	Particle Size Distribution						
	4.2.3	Soil Classification						
	4.2.4	Standard Proctor Density7						
	4.2.5	Natural Moisture Content7						
	4.2.6							
	4.2.7							
	4.2.8							
	4.2.9							
	4.2.1	.0 Specific Gravity and Water Absorption11						

	4.2.1	Unconfined Compressive Strength of Rock Cores				
5.0	RECOM	MENDATIONS AND CONCLUSION13				
	5.1	EVALUATION OF IN-SITU SOILS, BEARING CAPACITY AND SETTLEMENT13				
	5.2	EVALUATION OF THE BEDROCK AND BEARING CAPACITY				
	5.3	EXCAVATIONS				
	5.4	BACKFILL				
6.0	LIMITA	TIONS OF THE REPORT				
	6.1	GENERAL				
	6.2	CHANGES IN SITE AND SCOPE				
	6.3	USE OF REPORT15				
APPE	NDIX A .					
	Core Bo	x Photos1				
APPE	NDIX B	1				
	Borehol	e Logs1				
APPE	NDIX C					
	Atterbe	rg Limits1				
	Particle	Size Distribution – Grading Curves7				
	Particle	Size Distribution – Hydrometer Data13				
	Standar	d Proctor Density19				
	Natural	Moisture Content				
	Specific	Gravity of Soils27				
	Unconso	olidated Undrained Triaxial Test				
	One-Din	nensional Consolidation				
	Rock Po	rosity				
	Specific	Gravity and Water Absorption				
	Unconfi	ned Compressive Strength of Rocks				
APPE	NDIX D .					
APPE	NDIX E					
	Site Pho	tographs1				
	USCS Pla	asticity Chart2				
	Referen	ces1				
	Satellite	Map of the Site				
	Geotechnical Cross Section					

LIST OF TABLES

Table 1 - Coordinates and depths of investigation at the sampling points
Table 2 - Summary of in-situ permeability parameters 5
Table 3 - Laboratory tests performed on soil and rock samples
Table 4 - USCS soil classification
Table 5 - Summary of compaction parameters
Table 6 - Summary of soil moisture content
Table 7 - Summary of relative densities
Table 8 - Undrained shear parameters 8
Table 9 - Summary of consolidation parameters
Table 10 - Summary of porosity test results 10
Table 11 - Summary of specific gravity and water absorption 11
Table 12 - Summary Rock UCS test results and interpreted bearing capacities12
Table 13 - Bearing capacity calculation results
Table 14 - Estimated consolidation settlement of the subgrade soil 14
Table 15 - Recommended limiting design pressures 14

LIST OF FIGURES

Figure 1	- Satellite Map	of the WTP	Site2)
----------	-----------------	------------	-------	---

1.0 INTRODUCTION

1.1 PREAMBLE

Regional Geophysical Survey Limited (RGS) was engaged by ARTELIA/MIBP JV to carry out a geotechnical investigation (GI) in support of the proposed Mwache Water Treatment Plant (WTP) in Kwale County.

The purpose of the investigation was to identify the subsurface conditions beneath the proposed structures and determine their structural properties necessary for the preparation of the designs. The fieldwork for the investigation, which mainly consisted of 6 No. borings and in-situ permeability tests, was executed by RGS personnel in the period between 20th June and 5th July, 2021.

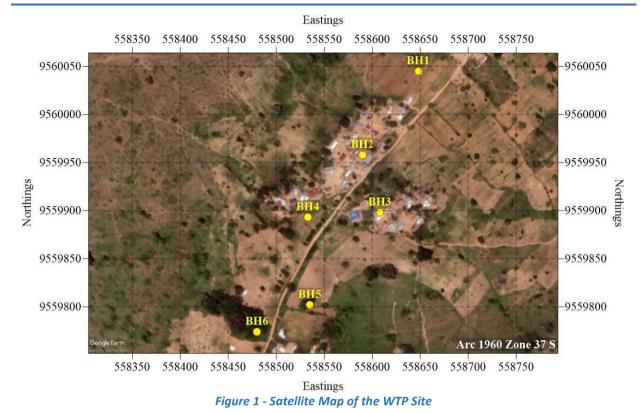
This report encompasses the results of the geotechnical investigation to determine the prevailing subsurface soil/rock and ground water conditions, and based on this information, provides recommendations for the geotechnical design of foundations.

1.2 OBJECTIVES

The following were the primary objectives of the geotechnical survey:

- a) Establish the subsurface stratigraphy at the borehole locations.
- b) Provide descriptions of the lithologic units encountered in the boreholes.
- c) Determine the in-situ permeability of the rock strata.
- d) Establish the geotechnical parameters of the subsurface layers relevant to foundation design.
- e) Document all findings and provide geotechnical recommendations.

1.3 SCOPE


To fulfil the abovementioned objectives, the scope of the investigation was as follows:

- a) Drill, sample and log of a total of 6 No. vertical, geotechnical boreholes (BH1 through BH6) each to 20 m bgl (below ground level).
- b) Perform Standard Penetration Tests (SPT) on soil layers encountered in the boreholes at 1 m intervals.
- c) Carry out in-situ borehole Lugeon (Packer) permeability tests.
- d) Perform laboratory tests on the representative soil and rock samples as per the GI specifications.
- e) Prepare a comprehensive, interpretative, geotechnical report.

1.4 SITE LOCATION

The project site is located at Fulugani village, Kasemeni Ward, Kinango Sub-County of Kwale County, about 22 km northwest of Mombasa City. The proposed WTP site lies along a crest situated southeast of the dam reservoir. The elevation at the study area was measured using a handheld GPS device and found to range from 129 masl (metres above mean sea level) at BH1 to 119 masl at BH6.

Figure 1 shows the geographic location of the WTP site and the layout of the boreholes.

2.0 FIELDWORK

2.1 GENERAL

The requirements given in British Standard, BS 5930:15, were used as a guide for carrying out the field investigations. A supervising geologist from RGS was stationed at the site in the entire duration of the fieldwork.

2.2 SETTING OUT

The table below presents the placed coordinates and elevations at all surveyed points in Arc 1960 (Zone 37 S) coordinate projection.

Sampling Point	Depth (m)	Easting	Northing	Elevation (m)
BH1	20	558648	9560045	129.29
BH2	20	558590	9559958	122.09
внз	20	558608	9559898	118.29
BH4	20	558533	9559893	119.15
BH5	20	558535	9559802	116.87
BH6	20	558480	9559774	118.71

2.3 METHODOLOGY

2.3.1 Rig and Accessories

Three (3) GY 150 rotary drilling rigs were procured to site to advance the boreholes to the required depths. Each of the hydraulic driven rigs was equipped with double tube barrels, hollow-stem and mud rotary auger, U100 samplers and standard SPT accessories.

The drilling equipment also included a mud pump which was used to impel drilling water into the borehole to cool the tungsten bit as it advanced through the bedrock as well as flush out cuttings from the bottom of the borehole.

2.3.2 Standard Penetration Test (SPT)

Standard Penetration Tests were performed in soil strata encountered at the bottom of the open boreholes at 1 m intervals. The dynamic test entailed the driving of a split spoon sampler into the soil layer by dropping a standard weight (63.5 kg) hammer through a standard distance (760 mm). This was followed by recording of the number of blows (N) required to achieve 300 mm penetration (in 150 mm increments) after an initial seating drive of 150 mm or 25 blows, whichever was achieved first.

2.3.3 Sampling

i. Soil Sampling

Soil samples were recovered from the boreholes through auguring. The disturbed soil samples were collected into standard moisture proof sample bags that were labelled to indicate the project name, borehole number, depth of recovery and date of sampling.

ii. Rock Sampling

Rock cores were carefully extracted from the double tube swivel type core barrels and placed into purpose made core boxes ensuring that the original depth orientation of each sample was maintained. The typical core box consisted of five grooves, each groove with adequate dimensions for containing one metre of the core section. Accordingly, at full recovery, every core box contained core samples from an approximately 5 m borehole section. The core boxes were labelled to indicate the project name, borehole number, core runs and date of sampling. Photographs of the core boxes are provided in Appendix A.

2.3.4 Logging of Soils and Rocks

The supervising geologist, stationed at the site, logged the soil and rock samples immediately after retrieval from the boreholes.

The recovered soils were visually and manually inspected according to the soil logging manual provided in BS 5930:99. It should be noted that subsequent laboratory testing was also used to further classify the sampled soils according to the Unified Soil Classification System (USCS). The latter classification (section 4.2.3) has been used in making geotechnical decisions as it is considered more definitive.

The rocks cores on the other hand were carefully examined for any exposed minerals, cementation, weathering condition, fracture/jointing condition and the quantity and quality of recovery.

2.3.5 Packer (Lugeon) Permeability Test

The packer test entails the measurement of the volume of water that can escape from an uncased section of borehole in a given time under a given pressure and assuming laminar flow.

Prior to performing the permeability test, the test borehole was flushed with drilling water until the returning water was as clean as the inflow water. After flushing was complete, a test section within the rock formation and to the bottom of the drill hole was isolated using a single, sealing, pneumatic packer. Water was then pumped in to this section at predetermined increasing and decreasing pressure levels. Each pressure stage was maintained for at least 10 minutes with injected quantity of water recorded every 5 minutes.

The maximum gauge pressure was kept below the estimated overburden stress at the test depth to minimize the risk of hydraulic fracture.

3.0 SUBSURFACE CONDITIONS

3.1 LIMITATIONS OF THE SAMPLING METHOD

Reference is to be made to the attached borehole logs (Appendix B) and geotechnical cross section (Appendix E) while reading this section. Stratigraphic boundaries indicated in the logs are inferred from non-continuous sampling methods and observation of drilling resistance which typically represent a transition from one stratum to another. These boundaries should not be interpreted to represent exact planes of geologic change but rather variation in subsurface conditions should be anticipated between and beyond the survey points.

The stratigraphy summary below has been simplified in terms of the major strata for the purposes of geotechnical design. This information may not be sufficient for estimating subsurface material quantities across the dam site or for the associated excavation costs. The factual data presented in the logs governs any interpretation of the site conditions.

Soil classifications reported in the logs are based on visual-manual inspection methods performed onsite. These classifications may differ from those deduced from subsequent laboratory classification tests.

3.2 STRATIGRAPHY

3.2.1 Silty Sand – Overburden Soil

A reddish-brown silty sand overburden soil layer was encountered at all six borehole locations. SPT tests in this surficial zone indicate dense in-situ soil packing. The depth of the overburden layer ranges from 2 m to 3 m.

3.2.2 Sandstone – Bedrock

Underlying the overburden soil is a brownish-grey sandstone bedrock. The rock head was found to be completely weathered at BH1 and BH6. Other minor rock types encountered within the bedrock are mudstone in BH1 and shale in BH3, BH5 and BH6.

4.0 ANALYSIS AND DISCUSSION OF TEST RESULTS

4.1 IN-SITU TESTS

4.1.1 Standard Penetration Tests (SPT)

The average SPT N-values within the overburden soil at the site was found to be about 33 blows/300 mm implying dense/hard in-situ conditions.

4.1.2 Lugeon Permeability Test

The lugeon value was computed from flow and pressure data using the formula below:

$$L=\frac{10\times Q}{P}$$

Where,

L = Lugeon value

Q = Water loss in litres/metre/min

P = Pressure in bars and,

 ${\bf 10}$ is the correction for standard test pressure of 10 bars

The interpreted lugeon values were acquired by introducing a best fit, straight line into the plot and a drawing second line parallel to the best fit but passing through the origin. The second line represents adjustments for water column pressure and was then extrapolated to 10 bars (1000kPa) to give the interpreted lugeon value. Permeability in ms⁻¹ was computed by multiplying the lugeon values by 1.3×10^{-7} .

The Table below presents a summary of the permeability data from each of the in-situ tests.

	De	pth		Equivalent Permeability, k	
Hole ID	From	То	Interpreted Lugeon	(ms⁻¹)	
	4	9	13.65	1.77E-06	
BH1	9	14	1.19	1.55E-07	
	14	19	0.47	6.11E-08	
	3	8	0.87	1.13E-07	
BH2	8	13	1.39	1.81E-07	
	13	18	0.56	7.28E-08	
	4	9	1.22	1.59E-07	
внз	9	14	1.84	2.39E-07	
	14	19	1.2	1.56E-07	
	3	8	0.76	9.88E-08	
BH4	9	14	0.68	8.84E-08	
	14	19	2.1	2.73E-07	
	4	9	0.5	6.50E-08	
BH5	9	14	0.41	5.33E-08	
	14	19	0.4	5.20E-08	
	6	10	1.16	1.51E-07	
BH6	10	15	0.75	9.75E-08	
	15	20	1.01	1.31E-07	

Table 2 - Summary of in-situ	permeability parameters
------------------------------	-------------------------

4.2 LABORATORY TESTS

For the purposes of discussion, the following subsections highlight/summarize the key soil and rock parameters determined through laboratory testing. Comprehensive backup data sheets are provided in Appendix C and should be frequently referred to when reading this section.

The laboratory tests were conducted to conform to the respective standard codes indicated on Table 3 below. Any alterations/modifications of the prescribed standard methods of testing due to specimen-based limitations are clearly outlined.

Material	Test	Standard Code	No. of Tests
	Atterberg Limits	BS 1377-2: 90	6
	Sieve Analysis	BS 1377-2: 90	6
	Hydrometer Analysis	BS 1377-2: 90	6
Soil	Standard Proctor Density	BS 1377-4: 90	6
5011	Natural Moisture Content	BS 1377-2: 90	6
	Specific Gravity of Soils	BS 1377-2: 90	6
	Unconsolidated Undrained (UU) Triaxial Test	BS 1377-8: 90	6
	One-Dimensional Consolidation	BS 1377-5: 90	6
	Porosity	ASTM C97-83	12
Rock	Specific Gravity and Water Absorption	BS 1377-6: 90	12
	Unconfined Compressive Strength (UCS) of Rocks	ASTM D7012	24

Table 3 - Laboratory tests performed on soil and rock samples

4.2.1 Atterberg Limits

The Atterberg tests were performed to investigate whether the sampled soils exhibit the proper consistency to support structural loads even as their moisture levels change. The Atterberg limits comprise liquid limit (LL), plastic limit (PL) and shrinkage limit (SL). These define the boundaries between the four stages of soil consistency/behavior and are defined as follows;

The liquid limit is the moisture content at which a soil passes from the liquid to the plastic state and is directly proportional to the compressibility of a soil. The plastic limit is the moisture content at which a fine-grained soil can no longer be remolded without cracking. The shrinkage limit is the water content at which the soil changes from a semi-solid to a solid state. Finally, the soil plasticity index (PI) represents the range in water content through which the soil is in a plastic state and was acquired from the difference between LL and PL.

The measured plasticity indices range from 10.6% to 15.2% implying medium plastic soils according to the qualitative plasticity classification proposed by Burmister (1949).

The liquid limits average at 28.7% and suggest a low degree of compressibility (Mills *et al*, 1980). Dakshanamurthy and Raman (1974) recommend that soils with liquid limits between 20% and 35% should be classified as low swelling soils.

The linear shrinkage values from the tests peak at 7.2%. Soils with linear shrinkage below 12% are considered to have a non-critical expansive rating (Mills *et al*, 1980).

The Atterberg parameters are summarized in Table 4.

4.2.2 Particle Size Distribution

Particle size distribution analysis evaluates the relative portions of different sizes of soil particles. From this, it is possible to determine whether the soil consists of predominantly gravel, sand, silt or clay sizes and, to a limited extent, which of these size ranges is likely to control the engineering properties of the soil.

Representative soil samples were analyzed for particle size distribution through wet sieving and sedimentation analysis using the hydrometer to enable the plotting of a continuous grading curve from the size of the coarsest particles down to clay sizes.

Generally, the grading test results indicate a predominance of fine-grained soils within the overburden layer. Table 4 lists the percentage fines confirmed in each test sample.

4.2.3 Soil Classification

The key objective of performing both Atterberg and grading tests on the same soil samples is to facilitate classification of the soils according to the Unified Soil Classification System (USCS).

Firstly, soils with less than 50% fines are categorized as coarse-grained soils while those with fine content equal to or greater than 50% as fine-grained. Afterwards, their Atterberg parameters (PL and LL) are plotted on the USCS plasticity chart (provided in Appendix E) and inspected relative to the "A" line to determine their full identity.

As can be perceived from the table below, the soils at the site were mainly classified as lean clays (CL).

	Depth (m)		Fines PI	PI	LL LS	LS	USCS Classification		
Hole ID	From	То	(%)	(%)	(%)	(%)	(%)	Name	Sym.
BH1	0.00	0.20	36	12.3	28.2	5.8	Clayey Gravel with Sand	GC	
BH2	0.00	1.85	72	14.4	31.6	6.8	Lean Clay with Sand	CL	
внз	0.00	0.20	50	15.2	32.8	7.2	Sandy Lean Clay	CL	
BH4	0.00	0.20	58	11.8	25.1	5.6	Sandy Lean Clay	CL	
BH5	0.00	1.50	43	10.6	27.6	5.0	Clayey Sand	SC	
BH6	0.00	0.20	60	12.4	26.9	5.8	Sandy Lean Clay	CL	

Table 4 - USCS soil classification

4.2.4 Standard Proctor Density

The dry density which can be achieved for a soil depends on the degree of compaction applied and the moisture content. The test involved compacting soil passing the 20 mm sieve at different moisture levels in a 1 litre mould using a 2.5 kg rammer with a 300 mm drop height.

The proctor test was performed on disturbed soil samples to acquire compacted specimens for the shear and consolidation tests. The acquired compaction parameters are tabulated below:

	Depth (m)		Standard Proctor Parameters		
Hole ID	From	То	Maximum Dry Density, MDD (kg/m³)	Optimum Moisture Content, OMC (%)	
BH1	0.00	0.20	1905	12.5	
BH2	0.00	1.85	1785	15.0	
внз	0.00	0.20	1823	13.8	
BH4	0.00	0.20	1827	13.1	
BH5	0.00	1.50	1851	12.6	
BH6	0.00	0.20	1915	12.0	

 Table 5 - Summary of compaction parameters

4.2.5 Natural Moisture Content

Select soil samples were evaluated for natural moisture content (w) through oven-drying at 110 °C. The lost mass due to drying was expressed as a percentage of the resulting dry soil mass and reported as the moisture content. The test results, summarized below, indicate that the natural soil moisture is generally dry of optimum.

	Deptl	h (m)	Mainture Contact (%)
Hole ID	From	То	Moisture Content (%)
BH1	0.00	0.20	1.3
BH2	0.00	1.85	3.8
BH3	0.00	0.20	3.5
BH4	0.00	0.20	1.1
BH5	0.00	1.50	3.0
BH6	0.00	0.20	1.1

Table 6 - Summary of soil moisture content

4.2.6 Specific Gravity of Soils

The specific gravity (particle density) of representative soil samples was determined via the small pycnometer method. Riffled specimens were placed in a density bottle (pycnometer) followed by the addition of distilled water. The resulting slurry was thereafter de-aired in a vacuum desiccator until no further loss of air was apparent. The recorded weighings in the various stages of the test were used to compute the specific gravity of the soil sample. The results are tabulated below.

Hole ID	Dept	h (m)	Smooifin Crewity
Hole ID	From	То	Specific Gravity
BH1	0.00	0.20	2.69
BH2	0.00	1.85	2.65
BH3	0.00	0.20	2.61
BH4	0.00	0.20	2.68
BH5	0.00	1.50	2.70
BH6	0.00	0.20	2.69

Table 7 - Summary of relative densities

4.2.7 Unconsolidated Undrained (UU) Triaxial Test

In triaxial tests, a soil specimen with a height approximately equal to twice its diameter is placed in a triaxial cell and subjected to three stresses at right angles to each other. The test consists of two phases, the consolidation phase and the shear phase.

The UU (Q) triaxial tests were performed on remolded soil samples. Each of the test samples (assumed saturated) was first subjected to a confining pressure and then the principal stress difference applied immediately without permitting drainage (i.e. no consolidation) at any phase of the test. In this case, the applied confining pressure was not entirely carried by the soil skeleton but rather also resulted in an increase in pore water pressure. Since the pore and back pressures are not measured in the UU test, the results have been interpreted in terms of total stress over a confinement pressure.

The test was repeated for three different confining pressures and the results are summarized below:

	Depth	n (m)	Undrained Shear Parameters				
Hole ID	From To		Angle of Shear Resistance, $arphi_u$ (°)	Cohesion, c_u (kN/m²)			
BH1	0.00	0.20	28	28			
BH2	0.00	1.85	19	34			
BH3	0.00	0.20	21	38			
BH4	0.00	0.20	17	44			
BH5	0.00	1.50	18	39			
BH6	0.00	0.20	16	38			

 Table 8 - Undrained shear parameters

4.2.8 One-Dimensional Consolidation

The objective of the consolidation test was to determine the compressibility characteristics of soils recovered from the boreholes. The test entailed determination of the magnitude and rate of the consolidation of a saturated or near-saturated specimen of soil in the form of a disc confined laterally, subjected to vertical axial pressure, and allowed to drain freely from the top and bottom surfaces.

The typical test sample was loaded axially in increments ranging from $50 - 800 \text{ kN/m}^2$ whereby each stress increment was held constant until the primary consolidation was complete. The consolidation test results along with the deduced parameters are provided below:

	Depth	ı (m)									Voids							
Hole ID	From	То	H₀	H1	σ'₀	σ'1	Mv	Cv	C _{sec}	E _{oed}	Ratio							
			20.00	19.47	0	62.5	0.424	9.210	Nil	2.4	0.401							
			19.47	19.26	62.5	125	0.173	8.129	Nil	5.8	0.386							
BU 01	0.00	2.00	19.26	18.90	125	250	0.150	8.605	Nil	6.7	0.360							
BH01	0.00	2.00	18.90	18.47	250	500	0.091	6.055	Nil	11.0	0.329							
			18.47	17.96	500	1000	0.055	2.213	Nil	18.1	0.292							
			17.96	17.49	1000	2000	0.026	4.302	Nil	38.2	0.258							
			20.00	19.54	0	62.5	0.368	8.468	Nil	2.7	0.504							
			19.54	19.32	62.5	125	0.180	4.462	Nil	5.6	0.487							
BH02	0.00	1.85	19.32	18.88	125	250	0.182	3.513	Nil	5.5	0.453							
впог	0.00	1.05	18.88	18.12	250	500	0.161	3.068	Nil	6.2	0.395							
				18.12	17.45	500	1000	0.074	1.829	Nil	13.5	0.343						
			17.45	16.79	1000	2000	0.038	2.309	Nil	26.4	0.293							
	3 0.00 2.00		20.00	19.67	0	62.5	0.264	11.371	Nil	3.8	0.477							
			19.67	19.49	62.5	125	0.146	9.968	Nil	6.8	0.463							
BH03		0.00	2.00	19.49	18.64	125	250	0.349	5.972	Nil	2.9	0.399						
ыюз		2.00	18.64	17.45	250	500	0.255	3.258	Nil	3.9	0.310							
										17.45	16.62	500	1000	0.095	2.796	Nil	10.5	0.248
			16.62	15.88	1000	2000	0.045	2.861	Nil	22.5	0.192							
			20.00	19.78	0	62.5	0.176	9.351	Nil	5.7	0.486							
			19.78	19.62	62.5	125	0.129	9.173	Nil	7.7	0.474							
BH04	0.00	2.00	19.62	19.40	125	250	0.090	8.247	Nil	11.1	0.458							
вп04	0.00	2.00	19.40	19.09	250	500	0.064	8.759	Nil	15.6	0.434							
			19.09	18.71	500	1000	0.040	3.440	Nil	25.1	0.406							
			18.71	18.24	1000	2000	0.025	6.830	Nil	39.8	0.370							
			20.00	19.53	0	62.5	0.376	10.162	Nil	2.7	0.454							
BH05	0.00	1.50	19.53	19.36	62.5	125	0.139	5.464	Nil	7.2	0.442							
			19.36	19.03	125	250	0.136	8.713	Nil	7.3	0.417							

Table 9 - Summary of consolidation parameters

	Depth	n (m)			,	,				_	Voids	
Hole ID	From	То	Ho	H1	σ'₀	σ'1	Μv	Cv	Csec	E _{oed}	Ratio	
			19.03	18.65	250	500	0.080	2.884	Nil	12.5	0.389	
			18.65	18.18	500	1000	0.050	4.001	Nil	19.8	0.354	
			18.18	17.59	1000	2000	0.032	2.190	Nil	30.8	0.310	
			20.00	19.61	0	62.5	0.312	9.276	Nil	3.2	0.402	
			19.61	19.49	62.5	125	0.098	3.206	Nil	10.2	0.393	
DUOC	0.00		19.49	19.37	125	250	0.049	7.011	Nil	20.3	0.385	
BH06	0.00	2.00	19.37	19.04	250	500	0.068	4.569	Nil	14.7	0.361	
				19.04	18.60	500	1000	0.046	3.070	Nil	21.6	0.330
			18.60	18.09	1000	2000	0.027	3.243	Nil	36.5	0.293	
Ho	Initial sample height (mm)			Mv		-	ume compre		²/MN)			
H ₁	Final sample height (mm)			Cv	Coefficient of consolidation (m ² /year)							
σ_{o}	Initial load (kN/m²)			Deg.	Degree of compressibility after Carter (1991)							
σ_1'	Final loa	d (kN/m²	?)		Eoed	Oedo	metric Modu	ılus (MN/m²,)			

4.2.9 Rock Porosity

Rock porosity is the percentage of interstitial space within the rock relative to the total volume of the rock. Rock specimens from the site were evaluated for porosity using the procedures stipulated in ASTM C97-83. The test results are tabulated below:

	Dept	h (m)	Death ID	
Hole ID	From	То	Rock ID	Porosity (%)
DUI1	9.00	9.75	Sandstone	2.0
BH1	18.00	18.70	Sandstone	1.1
BH2	8.00	8.40	Sandstone	1.4
впи	12.15	12.65	Sandstone	1.1
BH3	8.24	9.00	Sandstone	1.7
БЦЭ	18.30	18.60	Shale	1.0
BH4	6.00	6.60	Sandstone	1.4
ВП4	19.23	19.74	Sandstone	2.0
BH5	5.32	5.65	Sandstone	1.5
CDO	17.16	17.36	Shale	0.7
BH6	6.47	6.77	Sandstone	1.7
рпо	19.00	19.30	Sandstone	1.5

Table 10 - Summary of porosity test results

4.2.10 Specific Gravity and Water Absorption

The table below presents a summary of the specific gravity and water absorption tests performed on rock specimens:

	Dept	h (m)	De de ID	Apparent Relative	Water Absorption
Hole ID	From	То	Rock ID	Density	(%)
BH1	9.00	9.75	Sandstone	2.63	0.4
ВПТ	18.00	18.70	Sandstone	2.60	0.4
	8.00	8.40	Sandstone	2.57	0.3
BH2	12.15	12.65	Sandstone	2.61	0.6
	8.24	9.00	Sandstone	2.61	0.2
BH3	18.30	18.60	Shale	2.60	0.4
DUA	6.00	6.60	Sandstone	2.60	0.8
BH4	19.23	19.74	Sandstone	2.63	0.7
DUE	5.32	5.65	Sandstone	2.60	0.8
BH5	17.16	17.36	Shale	2.62	0.6
DUC	6.47	6.77	Sandstone	2.53	1.0
BH6	19.00	19.30	Sandstone	2.62	0.2

 Table 11 - Summary of specific gravity and water absorption

4.2.11 Unconfined Compressive Strength of Rock Cores

The unconfined compressive strength (UCS) is the maximum axial compressive stress that a right-cylindrical sample of material can withstand under unconfined conditions i.e. at zero confining stress.

Intact rock core samples recovered from the various rock formations at the site were trimmed targeting a standard height-to-diameter (L/D) ratio of about 2.0 before being subjected to axial loading in a compression machine. A height to diameter ratio of up to 2.5 was allowed for the finished core followed by the standardization of the UCS value to an equivalent core whose L/D = 2.0 as recommended in the standard.

The ultimate rock bearing pressure (q_u) values were computed from UCS using the Goodman (1980) formula below:

$$q_u = q_{ur}(N_{\emptyset} + 1)$$

Where,

$q_u =$ Ultimate Bearing Capacity

 q_{ur} = Factored unconfined compressive strength of the rock core. It has been observed that as the diameter of a UCS specimen increases, the unconfined compression strength decreases, which is referred to as the *scale effect*. For specimens larger than about 1 m in diameter, the UCS value remains approximately constant. There appears to be a fourfold to fivefold reduction in the magnitude (Braja, 2014). For this reason, to acquire q_{ur} for bearing capacity calculations, the laboratory standardized UCS values were factored down by 5.

$$N_{\phi}$$
 = A constant given by $tan^2(45 + \frac{\psi}{2})$

 ϕ = Angle of internal friction of the rock, estimated from 0. 145 × UCS + 25.

The design (safe) bearing pressures (q_d) were then calculated from the ultimate values by further applying a safety factor of 5 (Murthy, 2002). The compression test results and computed strength values are tabulated below;

Hole	Dept	h (m)	Back ID	Density	Standardized UCS	q _u -	q_d -
ID	From	То	Rock ID	(Kg/m ³)	(MPa)	Goodman (MPa)	Murthy (MPa)
	9.00	9.75	Sandstone	2590	100.14	110.05	22.01
BH01	12.48	13.00	Sandstone	2558	101.68	112.68	22.54
	18.00	18.70	Sandstone	2605	95.56	102.48	20.50
	8.00	8.40	Sandstone	2538	106.16	120.54	24.11
DUIDO	8.40	8.50	Sandstone	2604	106.93	121.92	24.38
BH02	12.15	12.65	Sandstone	2619	80.87	80.40	16.08
	15.30	16.00	Sandstone	2568	103.78	116.31	23.26
	8.23	9.00	Sandstone	2592	109.49	126.61	25.32
DUID	12.30	12.86	Sandstone	2567	106.56	121.26	24.25
BH03	18.30	18.60	Shale	2598	102.87	114.73	22.95
	19.37	19.63	Shale	2526	96.62	104.20	20.84
	6.00	6.60	Sandstone	2478	76.69	74.67	14.93
	14.58	14.68	Sandstone	2562	122.26	151.96	30.39
BH04	14.68	14.87	Sandstone	2562	136.07	183.54	36.71
	14.87	14.99	Sandstone	2605	61.32	55.40	11.08
	19.23	19.74	Sandstone	2636	85.31	86.74	17.35
	5.32	6.65	Sandstone	2449	62.90	57.26	11.45
	5.69	5.90	Sandstone	2475	84.63	85.75	17.15
BH05	14.08	14.47	Shale	2510	16.04	11.85	2.37
	16.36	16.50	Sandstone	2624	125.34	158.60	31.72
	17.10	17.30	Shale	2696	120.10	147.45	29.49
	6.47	6.77	Sandstone	2371	32.94	26.16	5.23
BH06	13.88	14.00	Sandstone	2399	36.11	29.08	5.82
	19.00	19.31	Sandstone	2540	119.35	145.90	29.18

Table 12 - Summary Rock UCS test results and interpreted bearing capacities

5.0 RECOMMENDATIONS AND CONCLUSION

The recommendations and conclusions provided herein are based on the following:

- Our understanding of the proposed project;
- Site observations and data obtained during the field exploration;
- Experience with similar conditions at other sites; and,
- Generally accepted geotechnical engineering principles and practices.

5.1 EVALUATION OF IN-SITU SOILS, BEARING CAPACITY AND SETTLEMENT

The in-situ soils are concluded to be mainly medium plastic lean clays with sand content generally above 15%. The soils are expected to undergo some degree of volumetric changes with variation of soil moisture; however, we believe that any heave or shrinkage of the in-situ soils will not be significant to affect the integrity of conventional lightly loaded structures supported thereupon.

Typical size (1.2 m to 1.5 m) square pad and strip foundations, both founded on the lean clay soil at 1.2 m bgl were considered for bearing capacity analysis using the equations below based on the classical theories by Terzaghi (1943). The average shear and density parameters established from laboratory tests were used to characterize the typical subgrade soil for bearing analysis.

Strip footings: $q_u = cN_c + \gamma D_f N_q + 0.5\gamma BN_\gamma$ Rectangular foundations: $q_u = cN_c(1+0.3\frac{B}{L}) + \gamma D_f N_q + 0.5\gamma BN_\gamma(1-0.2\frac{B}{L})$

Where,

 q_u = Ultimate bearing capacity c = Soil cohesion

 ϕ = Angle of internal friction

 γ = Effective unit weight of soil

B = Width of the foundation

L = Length of the foundation

 D_f = Foundation depth

 N_c , N_q , N_{γ} = Terzaghi's bearing capacity factors for general shear failure (Figure 5)

A factor of safety of 5 was used to compute the allowable bearing capacity (q_a) from the ultimate capacity. The calculation results are tabulated below:

o (1.01 (mo 2)	Ø	N7	N	N7	D _f	В	${m q}_a$ (ki	N/m²)
c (kN/m²)	(°)	Nq	N _c	Nγ	(m)	(m)	Strip	Spread
36	19.8	7.25	17.47	4.83	1.2	1.2	168	203
36	19.8	7.25	17.47	4.83	1.2	1.5	170	206

Table 13 - Bearing capacity calculation results

We recommend a limiting bearing capacity of 150 kN/m^2 for shallow foundations constructed on the in-situ soils and embedded to a minimum depth of 1.2 m bgl.

Long term consolidation settlement of foundations constructed on compressible soil can be computed from the coefficient of volume compressibility (m_v), obtained from the one-dimensional consolidation test, using the equation below:

$$\rho = \int_0^H m_v \times \Delta \sigma \times H$$

Where,

 ρ = Consolidation settlement (m).

 M_{ν} = Coefficient of compressibility (average of 1.59 x 10⁻⁴ m²/kN for net pressure increase of about 125 kN/m² see Table 9).

 $\Delta \sigma$ = Net increase in vertical stress (kN/m²)

H = Height of homogenous layer under stress (m).

The table below presents the estimated consolidation settlements for the recommended limiting bearing pressures:

Table 14 - Estimated	consolidation	cottlomont	of the	subarado soil
Tuble 14 - Estimuteu	consonaution	settiement	uj ule	subgruue som

Depth (m)	Estimated Initial	Recommended	Net Increase in	Estimated Consolidation
	Overburden Pressure	Limiting Design Bearing	Pressure	Settlement
	(kN/m²)	Values (kN/m ²)	(kN/m ²)	(mm)
1.2	22	150	128	16.3

The consolidation settlement estimated above assumes homogenous subgrade material and that the maximum depth of the uniformly compressible layer is 0.8 m. Realistically, the soil at the site comprises both coarse and finegrained soils. Therefore, it should be noted that the actual consolidation settlements of the heterogenous soil might be different from the theoretical estimate.

Finally, care should be taken to ensure the final bearing surface remains relatively undisturbed and free of water, debris and other deleterious matter.

5.2 EVALUATION OF THE BEDROCK AND BEARING CAPACITY

The bedrock at the site has been confirmed to be predominantly sandstone. The depth to bedrock is anticipated to range from 2 m to 3 m bgl. Structures sensitive to settlement should be directly supported on the bedrock subgrade. The table below presents our recommended design bearing capacities for the various subsurface zones at the borehole locations. The bearing recommendations are partly based on the results acquired through semi-empirical equations and partly on engineering judgment from experience with similar material.

Lesstien	Dep	th (m)	Anticipated Desvice Meterial	Limiting Design Bearing
Location	From	То	Anticipated Bearing Material	Capacity (kN/m ²)
	0	2	Lean clay to silty sand	150
BH1	2	4	Moderately to completely weathered Sandstone	300
DUT	4	7	Highly weathered mudstone	450
	7	20	Slightly weathered sandstone	5000
BH2	0	2	Lean clay to silty sand	150
впи	2	20	Fresh to slightly weathered sandstone	5000
0112	0 2.5		Lean clay to silty sand to weathered sandstone	150
BH3	2.5	20	Fresh to slightly weathered sandstone/shale	5000
	0	2	Lean clay to silty sand	150
	2	2.5	Highly weathered sandstone	500
BH4	2.5	10	Slightly to highly weathered sandstone	2000
	10	15	Moderately weathered, highly fractured sandstone	2500
	15	20	Slightly weathered, fractured sandstone	4500
	0 2 Lean clay to silty sand		Lean clay to silty sand	150
BH5	2	5	Slightly to highly weathered, fractured sandstone	1500
	5	10	Moderately weathered, fractured sandstone	2500

Table 15 - Recommended limiting design pressures

Location	Depth (m)		Autoinsted Desuise Material	Limiting Design Bearing	
	From	То	Anticipated Bearing Material	Capacity (kN/m ²)	
	10	20	Slightly weathered, fractured sandstone/shale	4500	
BH6	0	3	Lean clay to silty sand	150	
	3	5	Highly to completely weathered sandstone	450	
	5	15	Moderately to highly weathered sandstone	2000	
	15	20	Slightly weathered, fractured sandstone/shale	5000	

5.3 EXCAVATIONS

We recommend providing sufficient slope (1.5H:1V) for temporary in clayey soils. Near vertical cuts in fresh to moderately weathered rock can be self-supporting provided there is no joint behind the cut face which would otherwise make the slope susceptible to release of vertical boulders.

5.4 BACKFILL

The in-situ soils are not recommended for backfilling purposes. All filling and backfilling should be with approved hardcore or similar, and brought up in horizontal layers not exceeding 150 mm compacted thickness. Each layer should be thoroughly mixed, watered or dried as necessary, and compacted to a minimum dry density of 95% MDD.

6.0 LIMITATIONS OF THE REPORT

6.1 **GENERAL**

The interpretation and recommendations submitted in this report are based in part upon data obtained from a limited number of boreholes. Advice provided herein is intended for use by MIBP in the design phase of the project. If there are changes to the project scope and development features, the interpretations made of the subsurface information, the geotechnical design parameters and comments relating to constructability issues and quality control may not be relevant to the revised project.

There is no investigation which is thorough enough to determine all site conditions and anomalies, no matter how comprehensive the investigation program is as site data is derived from extrapolation of limited test locations (non-continuous sampling). The nature and extent of variations between test locations may not become evident until construction. The borings were carried out using investigation techniques consistent with those ordinarily exercised by other engineering practitioners, working under similar conditions and subject to the time, financial and physical constraints applicable to this project.

6.2 CHANGES IN SITE AND SCOPE

It must be recognized that the passage of time, natural occurrences, and direct or indirect human intervention at or near the site have the potential to alter subsurface conditions. In particular, caution should be exercised in the consideration of contractual responsibilities as they relate to disturbance of soils.

6.3 USE OF REPORT

This document is not intended to reduce the level of responsibility, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in to doing.

APPENDIX A

Core Box Photos

BH1: 0.0 – 6.0 m

BH1: 6.0 - 12.0 m

REPUBLIC OF KENYA – COAST WATER WORKS DEVELOPMENT AGENCY MWACHE WATER TREATMENT PLANT GEOTECHNICAL REPORT

BH1: 12.0 - 17.0 m

BH1: 17.0 - 20.0 m

BH2: 0.0 - 5.0 m

BH2: 5.0 - 10.0 m

BH2: 10.0 - 15.0 m

BH2: 15.0 - 20.0 m

BH3: 0.0 - 5.0 m

BH3: 5.0 - 10.0 m

BH3: 10.0 - 15.0 m

BH3: 15.0 - 20.0 m

BH4: 0.0 - 5.0 m

BH4: 5.0 - 10.0 m

BH4: 10.0 - 15.0 m

BH4: 15.0 - 20.0 m

BH5: 0.0 - 5.0 m

BH5: 5.0 - 11.0 m

BH5: 11.0 - 16.0 m

BH6: 0.0 - 6.0 m

BH6: 6.0 – 11.0 m

REPUBLIC OF KENYA – COAST WATER WORKS DEVELOPMENT AGENCY MWACHE WATER TREATMENT PLANT GEOTECHNICAL REPORT

BH6: 11.0 - 16.0 m

BH6: 16.0 - 20.0 m

APPENDIX B

Borehole Logs

I: Fresh & Hard	Weathering Grades Recovery Pro		Fracture Asperities		Fracture Index
	TCR Total C	ore Recovery	SR	Fresh & Hard	WR With residual material
I: Slightly Weathered		Juality Designation	М	Mechanical	
I: Moderately Weather			RI	Rough and Irregular	
	cu				
7: Highly Weathered					
/: Completely Weather	ed				
I: Residual Soil					
	D	YNAMIC CONE P	ENETI	RATION TEST	
	on Test (DCPT) involves g the penetration for eve		cone int	o the ground using an 8	Kg sliding hammer over a 575 mm
		STANDARD PEN	ETRA	TION TEST	
e bottom of the open be g the number of blows hieved first (BS EN IS breviated 'R' in the log	oreholes by dropping a s (N) required to achieve O 22476-3). Blow count	tandard weight (63.5 300 mm penetration ts in excess of 50 in t sistency descriptions	5 kg) ha after ar the 300 s of soil	mmer through a standard initial seating drive of 1 mm test phase are record	t spoon sampler into soil strata at l distance (760 mm) and record- 50 mm or 25 blows, whichever is ded as 'refusal' to penetration and ote that the test termination criteri
Cohesio	nless Soils			Cohesive Soils	
Relative Density		Consistency Very Soft	Und	Irained Shear Strength < 12	, kPa N - Value < 2
Very Loose Loose	< 4 4 - 10	Soft		12 - 25	< 2 2 - 4
Medium Dense	10 - 30	Firm		25 - 50	4 - 8
Dense	30 - 50	Stiff Very Stiff		50 - 100 100 - 200	8 - 16 16 - 32
Very Dense	> 50	Hard		> 200	> 32
		tent well above optin	mum (v	$\mathbf{v} \approx \mathbf{w}_{opt}$), no visible pore $v > \mathbf{w}_{opt}$), has visible pore	
	Park Mars Ouslity	ROCK DESCI		and and and and and and and	
RQD (%)	Rock Mass Quality		Comp	ressive Strength (MPa)	26.96 W 12 STORMAR 26.
0 - 25 25 - 50	Very Poor Poor			< 1 1 - 5	Extremely Weak Very Weak
50 - 75	Fair			5 - 25	Weak
75 - 90 90 - 100	Good Excellent			25 - 50 50 - 100	Medium Strong Strong
90 - 100	Excellent			100 - 250	Very Strong
				> 250	Extremely Strong
		SYMB	BOLS		
		abola May not ranna	esent ful	l equilibrium condition.	
₹ Last record	of water level in the bor	enoie. May not repre			
₹ Last record	of water level in the bor	enoie. May not repre			
Last record	of water level in the bor	enore. May not repre			
₹ Last record	of water level in the bor	enole. May not repre			
₹ Last record	of water level in the bor	enore. May not repre			
₹ Last record	of water level in the bor	enore. May not repre			
Last record	of water level in the bor	enore. May not repre			
₹ Last record	of water level in the bor	enore. May not repre			
¥ Last record	of water level in the bor	enore. May not repre			
₹ Last record	of water level in the bor	enore. May not repre			

Project: Location Client:		he WTP County			REGIO	NAL GEOPHYSICAL SURVEY	Elevation (m UTM Coordina (ARC 1960 Drilling Date	ates <u>E</u>) N	129.29 0558648 9560045 22/06 24/06	Zone 37 S /2021	
					BC	OREHOLE LOG		LIM	24/00	2021	
Drilling	Method:	Rotary			Logged By:	Solomon	Borehole ID.: I	3H1	al: 0° Cuade of Cuade		
		GY 150			Drilled By:	Richard	Total Depth Dri				
Barrel 6	ð: 86/101 t	nm Aug	ur Ø: 15	0 mm	Water rest L		Inclination From	n Vertical:	0º		
		T	acouoru		Sheet	1 of 2		-			
Depth (m)	Elevation (m)	Run (m)	Recovery TCR (%)	RQD (%)	Lithology	Lithology Descri	ption	Weathering Grade	Fracture Frequency	SPT N - Value	
0	129	1	100	-		Recovered as slightly moist, re green dense silty sand. Colluviu	ddish brown, tinge m soil.(friable zone) VI	-		
	128	1	100	-		Recovered as slightly moist, re green dense silty sand with co sandston. Colluvium soil	bbly fragments of	VI	-		
2	127	1	100	-		Recovered as redish brown, ting weathered cobbly fragmen characterized by irregular no	ts of sandstone	v	>20		
3 	126	1	100	-		Brownish grey, moderately weat to fine grained sandstone. Char spaced, horizontal to subvertical fracture surfaces that are weath	acterised by closely , rough and irregula	r III	>20		
4	125 124 	2	50	-		light grey, tinge green moderatly crumbly, fine grained mudston closely spaced, horizontal to s	e. Characterised by	d, IV	>20		
- 6 - 7 - 7	123 122	2	50	14		Brownish grey, moderately to hig medium to fine grained sandsto closely to widely spaced, horiz rough and irregular frac	ne. Characterised by ontal to subvertical,	/ III	>20		
- 8 	121	1	100	100		Brownish grey, slightly weather fine grained sandstone. Charact sub vertical, rough and regula	erised by non intact	р, II	0		
10	120 	1	100	95		Brownish grey, slightly weather fine grained sandstone. Chara spaced, sub vertical, rough an surfaces.	cterised by widely	п	1		
KEY	S	ilty Sand		Sandste	one	Mudstone		Note: See app notes for deta and basis of d	ils of abbi	reviations	

Project: Location Client:		iche WTP le County P			REGIO	NAL GEOPHYSICAL SURVEY	Elevation (m UTM Coordina (ARC 1960) Drilling Date	ates E) N	129.29 0558648 9560045 22/06 24/06	Zone 37 S /2021
					BC	OREHOLE LOG		Ein	24/00	/2021
Drilling	Method:	Rotary			Logged By:	Solomon	Borehole ID.: I	3H1		
Drill Rig	g Type:	GY 150			Drilled By:	Richard	Total Depth Dri	illed: 20 m		
Barrel Ø	ð: 86/101	mm Aug	gur Ø: 15	0 mm	Water rest L		Inclination From	n Vertical:	0°	
		T			Sheet	t 2 of 2				
(II)	ion	r	Recovery					ring	rency	lue
Depth (m)	Elevation (m)	Run (m)	TCR (%)	RQD (%)	Lithology	Lithology Descri	ption	Weathering Grade	Fracture Frequency	SPT N - Value
	119 	1	100	83		Brownish grey, slightly weather fine grained sandstone. Charact widely spaced, horizontal, rough surfaces.	erised by closely to	п	2	
- 11 	118 	1	100	54		Brownish grey, slightly weather fine grained sandstone. Charact widely spaced, horizontal, rough surfaces.	erised by closely to	п	2	-
12 	117 	1	100	75		Brownish grey, slightly weather fine grained sandstone. Charact widely spaced, horizontal , rougl surfaces.	erised by closely to	п	3	
13 14	116 	1	100	92		Brownish grey, slightly weather fine grained sandstone. Charact widely spaced, horizontal , rougl surfaces.	erised by closely to	п	1	
14 15	115 	1	100	69		Brownish grey, slightly weather fine grained sandstone. Charact widely spaced, horizontal to sub irregular fracture s	erised by closely to vertical, rough and	п	5	
_	114 	1	100	75		Brownish grey, slightly weather fine grained sandstone. Charact widely spaced, horizontal to sub irregular fracture s	erised by closely to vertical, rough and	п	4	-
16 	113 	1	100	100		Brownish grey, slightly weather fine grained sandstone. Charact horizontal , rough and irregula	erised by non intact,	, II	4	-
- 17 	112 	1	100	-		Brownish grey, tinge green, slig medium to fine grained sandston non intact, horizontal, rough a surfaces.	ne. Characterised by		3	
18 	- 	1	100	60		Brownish grey, slightly weather fine grained sandstone. Charact widely spaced, horizontal to sub irrregular fracture s	erised by closely to vertical, rough and	п	4	
19 	110 	1	100	37		Brownish grey, slightly weather fine grained sandstone. Charact widely spaced, horizontal to sub irrregular fracture s	erised by closely to vertical, rough and	п	5	
KEY		Silty Sand		Sandst	one	Mudstone		Note: See app notes for deta and basis of d	ils of abbi	reviations

Project: Location Client:		he WTP County			REGIO	NAL GEOPHYSICAL SURVEY	Elevation (m UTM Coordina (ARC 1960 Drilling Date	ates E) N	122.09 0558590 9559958 21/06 22/06	Zone 37 S /2021
					BO	OREHOLE LOG		Lind	22.00	
Drilling	Method:	Rotary			Logged By:	Solomon	Borehole ID.: 1	3H2		
Drill Rig	g Type: G	Y 150			Drilled By:	Hillary	Total Depth Dri	illed: 20 m		
Barrel Ø	ð: 86/101 r	nm Aug	ur Ø: 15	0 mm	Water rest L		Inclination From	n Vertical:	0°	
					Shee	t 1 of 2				
Depth (m)	Elevation (m)	Run (m)	TCR (%)	RQD (%)	Lithology	Lithology Descri	ption	Weathering Grade	Fracture Frequency	SPT N - Value
	122			0		Slightly moist, reddish brown, o	lense silty sand soil.		H	
- 1	121	1	100	0		Colluvium so		VI	-	
-		1	100	0		Slightly moist, reddish brown, o Colluvium so		VI		32
	120 	1	100	91		Brownish grey, slightly weath grained sandstone. Characte horizontal, rough and irregular f are weathered to brow	rised by closed, racture surfaces that	t II	2	
	119 	1	100	93		Brownish grey, slightly weath grained sandstone. Characte horizontal, rough and irregular f are weathered to brow	rised by closed, racture surfaces that	t II	4	
- 4 - - -	118 	1	100	87		Brownish grey, slightly weath grained sandstone. Characte horizontal, rough and irregular f are weathered to brow	rised by closed, racture surfaces that	t II	8	
5 	117 	1	100	91		Brownish grey, slightly weath grained sandstone. Characte horizontal, rough and irregular f are weathered to brow	rised by closed, racture surfaces that	t II	4	
6 7	116 	1	100	19		Brownish grey, slightly weath grained sandstone. Characte horizontal, rough and irregular f are weathered to brow	rised by closed, racture surfaces that	t II	12	
- 8	115 	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	I	0	
8 9	114 	1	100	79		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	I	3	
9 10	113 	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	Ι	4	
KEY	S	ilty Sand		Sandsto	one			Note: See app notes for deta and basis of c	ils of abbi	eviations

Project: Location Client:		he WTP County			REGIO	NAL GEOPHYSICAL SURVEY	Elevation (n UTM Coordin (ARC 1960 Drilling Dat	ates E) N	122.09 0558590 9559958 21/06 22/06	Zone 37 S /2021
						OREHOLE LOG				
	Method:				Logged By:		Borehole ID.:			
	g Type: C		nn (År. 15	0	Drilled By:		Total Depth Dr		00	
Barrel	ð: 86/101 i	nm Aug	ur Ø: 15	0 mm	Water rest L Shee		Inclination From	m vertical:	0.	
-		F	Recovery		Shee			හ	~	0
Depth (m)	Elevation (m)	Run (m)	TCR (%)	RQD (%)	Lithology	Lithology Descri	ption	Weathering Grade	Fracture Frequency	SPT N - Value
10 	112 	1	100	82		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	I	3	
11 12	111 	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	Ι	2	-
12 13	110 	1	100	65		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	Ι	3	
	109 	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	Ι	3	•
14 	108 	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	I	2	
15 	107 	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	Ι	1	
16 	106 	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	Ι	3	
17 	105 	1	100	82		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	Ι	4	
18 	104 	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	I	2	
19 	103	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	Ι	2	
KEY	S	ilty Sand		Sandst	one			Note: See app notes for deta and basis of d	ils of abbi	reviations

Project: Location Client:		che WTP e County				NAL GEOPHYSICAL SURVEY DREHOLE LOG	Elevation (m UTM Coordina (ARC 1960) Drilling Date	ates E) N	118.29 0558608 9559898 20/06 23/06	Zone 37 S /2021
Drilling	Method:	Rotary			Logged By:		Borehole ID.:	ана		
	g Type: (Drilled By:		Total Depth Dri			
	0: 86/101		ur Ø: 15	0 mm	Water rest L		Inclination From	and the second second	0°	
					Shee					
(1	u	F	Recovery					ng	0.00	e
Depth (m)	Elevation (m)	Run (m)	TCR (%)	RQD (%)	Lithology	Lithology Descri	ption	Weathering Grade	Fracture Frequency	SPT N - Value
0	118 	1	100	0		Slightly moist, reddish brown, o Colluvium so		VI	-	
- 1 - -	117 	1	100	0		Slightly moist, reddish brown, o Colluvium sc		VI	-	33
— 2 	116	1	100	14		Brownish grey, slightly weath grained sandstone. Characte horizontal, rough and irregular f are weathered to brow	rised by closed, racture surfaces that	t II	6	
— 3 - -	115 	1	100	71		Brownish grey, slightly weath grained sandstone. Characte horizontal, rough and irregular f are weathered to brow	rised by closed, racture surfaces that	t II	7	
— 4 - - - — 5	114 	1	100	100		Brownish grey, slightly weath grained sandstone. Characte horizontal, rough and irregular f are weathered to brow	rised by closed, racture surfaces that	t II	3	
5 6	113 	1	100	57		Brownish grey, slightly weath grained sandstone. Characte horizontal, rough and irregular f are weathered to brow	rised by closed, racture surfaces that	t II	5	
0 	112	1	100	56		Brownish grey, slightly weath grained sandstone. Characte horizontal, rough and irregular f are weathered to brow	rised by closed, racture surfaces that	t II	7	
— 7 - - - 8	- - 111 -	1	100	72		Brownish grey, slightly weath grained sandstone. Characte horizontal, rough and irregular f are weathered to brow	rised by closed, racture surfaces that	t I	6	
	110	1	100	92		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	I	2	
— 9 - - - 10	109 	1	100	97		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	I	1	
KEY	S	ilty Sand		Sandste	one	Shale		Note: See ap notes for deta and basis of c	ils of abbi	reviation

Project: Location Client:		che WTP e County			REGIO	NAL GEOPHYSICAL SURVEY	Elevation (n UTM Coordin (ARC 1960 Drilling Dat	ates E) N	118.29 0558608 9559898 20/06 23/06	Zone 37 S /2021
					BC	OREHOLE LOG				
	Method:	and the second second			Logged By:		Borehole ID.:			
Drill Rig		GY 150			Drilled By:		Total Depth Dr			
Barrel Ø	ð: 86/101 í	mm Aug	ur Ø: 15	0 mm	Water rest L		Inclination From	m Vertical:	0°	
		L	Recovery		Sheet	t 2 of 2		50		
Depth (m)	Elevation (m)	Run (m)	TCR (%)	RQD (%)	Lithology	Lithology Descri	ption	Weathering Grade	Fracture Frequency	SPT N - Value
	108 	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	I	4	
	107 	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	I	3	
12	106 	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	I	3	
13 14	105 	1	100	100		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	I	2	
_	104 	1	100	71		Grey, fresh, hard, medium g Characterised by closed, hori irregular fracture s	zontal, rough and	Ι	8	
15 	103	1	100	22		Grey, Slightly weathered, har shale. Characterised by close horizontal, rough and irregula	d, closely spaced,	Ι	11	
16	102	1	100	60		Grey, Slightly weathered, hard shale. Characterised by close horizontal, rough and irregula	d, closely spaced,	I	8	
17 	101 	1	100	49		Grey, Slightly weathered, hard shale. Characterised by close horizontal, rough and irregula	d, closely spaced,	I	11	
18	100 	1	100	44		Grey, Slightly weathered, hard shale. Characterised by close horizontal, rough and irregula	d, closely spaced,	Ι	15	
20		1	100	83		Grey, Slightly weathered, hard shale. Characterised by close horizontal, rough and irregula	d, closely spaced,	I	7	
KEY	S	ilty Sand		Sandsto	one <u> </u>	Shale		Note: See app notes for deta and basis of d	ils of abbi	reviations

Project: Location		he WTP County			REGIO	NAL GEOPHYSICAL	Elevation (m UTM Coordina (ARC 1960)	ates E	119.15 0558533 9559893	Zone
Client:	MIBP	County				SURVEY	Drilling Date	Star	01/07	/2021
Chefit.	WIDP				P(OREHOLE LOG	2. mig Dui	End	04/07	/2021
Drilling	Method:	Rotary			Logged By:		Borehole ID.:	RH4		
	g Type: G				Drilled By:		Total Depth Dri			
	0: 86/101 r		gur Ø: 15	0 mm	Water rest L		Inclination From	and the second conv	0°	
					Sheet					
(1	q	F	Recovery					bu	e oy	Ie
Depth (m)	Elevation (m)	Run (m)	TCR (%)	RQD (%)	Lithology	Lithology Descri	ption	Weathering Grade	Fracture Frequency	SPT N - Value
0	119 	1	100	-		Recovered as slightly moist, re green dense clayey silty sand. Co zone)		e VI	-	
	118 	1	100	-		Recovered as slightly moist, re green dense clayey silty sand. Co zone)		e VI	-	
2	117	0.5	98	-		Brownish grey, moderately weat to fine grained sandstone. Char spaced, horizontal to subvertical	acterised by closely , rough and irregula	r III	9	
3		0.5	99	-		fracture surfaces that are weath Brownish grey, moderately weat to fine grained sandstone. Charac	hered, hard, mediun cterised by closely t	n III o	3	
	116 	1	100	96		widely spaced, horizontal to sul irregular fracture surfaces tha redish brow Brownish grey tinge green, mo hard, medium to fine grai Characterised by widely space	overtical, rough and t are weathered to n derately weathered, ned sandstone.		2	
4 	115 	1	100	85		subvertical, rough and irregular are weathered to red Brownish grey tinge green, mo hard, medium to fine grain Characterised by closely to wide	fracture surfaces that ish brown derately weathered, ned sandstone. ly spaced, horizonta	_/ III	4	
5 	114 	1	100	94		to subvertical, rough and irregu that are weathered to re Brownish grey tinge green, mo hard, medium to fine grain Characterised widely space subvertical, rough and irregular are weathered to red	edish brown derately weathered, ned sandstone. d, horizontal to fracture surfaces tha	ш	2	
6 7	113 	1	100	92		Brownish grey tinge green, slig medium to fine grained sandst widely spaced, horizontal to sul irregular fracture surfaces tha redish brow	ntly weathered, hard one. Characterised overtical, rough and t are weathered to		2	•
7 8	112 	1	100	72		Brownish grey tinge green, slig medium to fine grained sandst closely to widely spaced, horiz rough and irregular fracture weathered to redisl	one. Characterised ontal to subvertical, surfaces that are	20000	6	
8 9	111 	1	100	50		Brownish grey tinge green, slig medium to fine grained sandst closely to widely spaced, horiz rough and irregular fracture weathered to redisl	one. Characterised ontal to subvertical, surfaces that are	8	7	
9 10	110 	1	100	89		Brownish grey tinge green, slig medium to fine grained sandst closely to widely spaced, horiz rough and irregular fracture weathered to redisl	one. Characterised ontal to subvertical, surfaces that are		2	
KEY	C	layey Silf	ty Sand		Sandstone			Note: See ap notes for deta and basis of o	ils of abbi	reviations

Project: Location Client:		he WTP County				NAL GEOPHYSICAL SURVEY	Elevation (m UTM Coordin (ARC 1960 Drilling Date	ates E) N	119.15 0558533 9559893 01/07 04/07	Zone 37 S /2021
						OREHOLE LOG	D 1 1 10			
	Method: I				Logged By:		Borehole ID.: I			
	g Type: C		0.15	0	Drilled By:		Total Depth Dri		0.0	
Barrel	ð: 86/101 r	nm Aug	gur Ø: 15	0 mm	Water rest L Sheet		Inclination From	n vertical:	05	
		F	Recovery	ŧ	Slice			60		
Depth (m)	Elevation (m)	Run (m)	TCR (%)	RQD (%)	Lithology	Lithology Descri	ption	Weathering Grade	Fracture Frequency	SPT N - Value
10	109 	1	100	-		Recovered as brownish grey, t weathered cobbly fragmen characterized by irregular no	ts of sandstone	IV	>20	
11 	108	1	100	25		Brownish grey tinge green, mo hard, medium to fine grain Characterised by closely space subvertical, rough and irregular are weathered to redi	ned sandstone. ced, horizontal to fracture surfaces that	Ш	>20	
12 	107 	1	100	22		Brownish grey tinge green, mo hard, medium to fine grain Characterised by closely space subvertical, rough and irregular are weathered to redi	ned sandstone. ced, horizontal to fracture surfaces that	ш	12	
_	106 	1	100	40		Brownish grey, tinge green mo weathered hard, medium to sandstone. Characterised by clos horizontal and irregular fr	ine grained shaly ely to widely spaced	d, III	11	
14 	105 	1	100	20		Brownish grey, tinge green mo weathered hard, medium to f sandstone. Characterised by clos horizontal and irregular fr	fine grained shaly ely to widely spaced	_{d,} III	18	
15 	104 	1	100	45		Brownish grey, tinge green sligh medium to fine grained sandsto closely to widely spaced, horiz fracture surfac	ne. Characterised by contal and irregular		8	
16	103	1	100	73		Brownish grey, tinge green sligh medium to fine grained sandsto closely to widely spaced, horiz fracture surfac	ne. Characterised by contal and irregular		6	
17 18	102	1	100	52		Brownish grey, tinge green sligh medium to fine grained sandsto closely to widely spaced, horiz fracture surfac	ne. Characterised by contal and irregular		7	
18 19	101	1	100	49		Brownish grey, tinge green sligh medium to fine grained sandsto closely spaced, horizontal and surfaces	ne. Characterised by		13	
19 20	100 	1	100	73		Brownish grey, tinge green slig medium to fine grained sh Characterised by widely space irregular fracture s	aly sandstone. ed, horizontal and	l, II	6	
KEY	C	layey Sil	ty Sand		Sandstone			Note: See app notes for deta and basis of c	ils of abbi	eviations

Project: Location		he WTP County)		REGIO	NAL GEOPHYSICAL	Elevation (m) UTM Coordinate (ARC 1960)	N	116.87 0558535 9559802	Zone 37 S
Client:	MIBP					SURVEY	Drilling Date	Start End	26/06 27/06	
_					BO	OREHOLE LOG				
	Method: 1				Logged By:		Borehole ID.: BI			
	g Type: C		~ ~ ~ ~	-	Drilled By:		Total Depth Drill	Constant Constant Constant		
Barrel @	ð: 86/101 r	nm Aug	gur Ø: 15	0 mm	Water rest L Sheet		Inclination From	Vertical:	0°	
		F	Recovery		Shee	t 1 of 2		50		
Depth (m)	Elevation (m)	Run (m)	TCR (%)	RQD (%)	Lithology	Lithology Descri	ption	Weathering Grade	Fracture Frequency	SPT N - Value
0	 116	1	100	-		Recovered as slightly moist, re green dense clayey silty sand. Co zone)		VI	-	
	 115	1	100	-		Recovered as slightly moist, re green dense silty sand crumbly sandstone. Colluvium soil	cobbly fragments of	VI	-	
	 114	1	100	47		Brownish grey, moderately to hard, medium to fine grain Characterised by closely to wide and irregular fracture	ed sandstone. ly spaced, horizontal	IV	>20	
3 4	 113	1	96	41		Brownish grey, moderately to hard, medium to fine grair Characterised by closely to wide and irregular fracture	ed sandstone. ly spaced, horizontal	IV	14	
5	112 111 111	2	50	10		Brownish grey, moderately to hard, medium to fine grair Characterised by closely spac irregular fracture s	ed sandstone. ed, horizontal and	IV	6	
6 7	 	1	100	47		Brownish grey, moderately medium to fine grained sandsto closely to widely spaced, horiz fracture surfac	ne. Characterised by contal and irregular	III	8	
8		2	50	13		Brownish grey, moderately medium to fine grained sandsto closely to widely spaced, horiz fracture surfac	ne. Characterised by contal and irregular	ш	15	
9 	 	1	98	26		Brownish grey, moderately medium to fine grained sandsto closely to widely spaced, horiz fracture surfac	ne. Characterised by contal and irregular	Ш	11	
KEY	Si	ilty Sand		Clayey	Silty Sand	Sandstone S	hale n	lote: See app otes for deta nd basis of d	ils of abbi	eviations

Project: Location Client:		he WTP County				NAL GEOPHYSICAL SURVEY	Elevation (m UTM Coordina (ARC 1960 Drilling Date	ates E) N	116.87 0558535 9559802 26/06 27/06	Zone 37 S /2021
Drilling	Method:	Rotary			Logged By:		Borehole ID.:	BH5		
	g Type: C				Drilled By:		Total Depth Dri	and the second sec		
and the second s	ð: 86/101 r		ur Ø: 15	0 mm	Water rest L		Inclination From	Contraction of the second	0°	
					Shee	A SALES COM				
(t	п	F	Recovery					ng	o Á	le
Depth (m)	Elevation (m)	Run (m)	TCR (%)	RQD (%)	Lithology	Lithology Descri	ption	Weathering Grade	Fracture Frequency	SPT N - Value
10 	 106	1	96	30		Dark grey, tinge green, moderat grained shale. Characterised b horizontal, smooth and regula	by closely spaced,	п	14	
— 11 — — — — 12	 	1	95	44		Dark grey, tinge green, modera grained shale. Characterised t horizontal, smooth and regula	by closely spaced,	ш	12	_
-	 	1	5	62		Dark grey, tinge green, slight grained shale. Characterised t horizontal, smooth and regula	by closely spaced,	п	9	
— 13 - - - - - - - - -	103	1	98	72		Dark grey, tinge green, slight grained shale. Characterised t horizontal, smooth and regula	by closely spaced,	п	13	
=, =, =,	 102	1	100	79		Dark grey, tinge green, slight grained shale. Characterised b horizontal, smooth and regula	by closely spaced,	п	17	•
— 15 - - -	 	1	99	73		Brownish grey, dark grey, tin weathered, medium to fine grair Characterised by closely to wide to sub vertical irregular fr	ned shaly sandstone ly spaced, horizonta	il II	8	
— 16 - - - - 17	 100	1	97	67		Brownish grey, dark grey, tin weathered, medium to fine grair Characterised by closely to wide to sub vertical irregular fr	ned shaly sandstone ly spaced, horizonta		11	
-1	 99	1	98	58		Dark grey, tinge green, slight grained shale. Characterised t horizontal, smooth and regula	by closely spaced,	п	>20	
— 18 - -	 98	1	96	28		Dark grey, tinge green, slight grained shale. Characterised by spaced, horizontal, smooth an surface.	y closely to widely	п	>20	
- 19 - - - - 20	 97	1	96	69		Brownish grey, dark grey, tin weathered, medium to fine grair Characterised by closely to wide to sub vertical irregular fr	ned shaly sandstone ly spaced, horizonta	M II	18	
KEY	S	ilty Sand		Clayey	Silty Sand	Sandstone S	hale	Note: See ap notes for deta and basis of c	ils of abb	reviation

Project: Location Client:		he WTP County				NAL GEOPHYSICAL SURVEY	Elevation (m UTM Coordina (ARC 1960) Drilling Date	tes E N	118.71 0558480 9559774 01/07 05/07	Zone 37 S 2021
						OREHOLE LOG				
	Method:				Logged By:		Borehole ID.: E			
construction of the second second	g Type: 🕻				Drilled By:	Hillary	Total Depth Dri	lled: 20 m		
Barrel @	ð: 86/101 i	mm Aug	gur Ø: 15	0 mm	Water rest L		Inclination From	n Vertical:	0º	
	-	-			Shee	t 1 of 2				
Depth (m)	Elevation (m)	Run (m)	TCR (%)	RQD (%)	Lithology	Lithology Descri	ption	Weathering Grade	Fracture Frequency	SPT N - Value
0	118	1	100	-		Recovered as slightly moist, re green dense clayey silty sand. Co zone)			-	
— 1 — — — — 2	 117	1	100	-		Recovered as slightly moist, re green dense clayey silty sand. Co zone)		e VI	121	
- - - - 3	 116	1	100	-		Recovered as slightly moist, re green dense clayey silty sand fragments of sandstone. Colluvir	with friable cobbly	e) VI	-	
4 4 4 5	115 115 114	2	50	-		Recovered as slightly moist, r green friable cobbly fragm completely weathered sandston non intact irregular fractur	ents of highly to e. Characterised by	V	>20	
 	 113	1	100	25		Brownish grey, moderately to medium to fine grained sandsto closely to widely spaced ,horiz irregular fractu	ne. Characterised by ontal to sub vertical	IV	>20	
- - - - - 7	 112	1	100	39		Brownish grey, moderately to medium to fine grained sandsto closely to widely spaced ,horiz irregular fractu	ne. Characterised by ontal to sub vertical	IV	>20	
-	 111	1	100	22		Brownish grey, moderately to medium to fine grained sandston closely spaced ,horizontal to su fractures.	ne. Characterised by	IV	19	
8 	 110	1	100	37		Brownish grey, moderately to medium to fine grained sandsto closely to widely spaced ,horiz irregular fractu	ne. Characterised by ontal to sub vertical	IV	12	
— 9 — — — — 10	 109	1	100	78		Brownish grey, moderately to medium to fine grained sandsto closely to widely spaced ,horiz irregular fractu	ne. Characterised by ontal to sub vertical	IV	9	
KEY	c	layey Sil	ty Sand		Sandstone	Shale		Note: See app notes for deta and basis of d	ils of abbi	eviation

Project: Location Client:		che WTP e County	8		REGIO	NAL GEOPHYSICAL SURVEY	Elevation (m UTM Coordina (ARC 1960) Drilling Date	tes E N Start		Zone 37 S /2021
Cheft:	MIBI				B	OREHOLE LOG	Drining Date	End	05/07	/2021
Drilling	Method:	Rotary			Logged By:		Borehole ID.: B	H6		
	g Type:				Drilled By:	Hillary	Total Depth Dri	lled: 20 m		
Barrel @	ð: <u>86/101</u>	mm Aug	gur Ø: 15	0 mm	Water rest L	.evel: -	Inclination Fron	n Vertical:	0°	
		-			Shee	t 2 of 2				
Depth (m)	Elevation (m)	Run (m)	TCR (%)	RQD (%)	Lithology	Lithology Descri	ption	Weathering Grade	Fracture Frequency	SPT N - Value
10 	 108	1	100	27		Brownish grey, highly weather grained sandstone. Characterised spaced ,horizontal to sub vertica	by closely to widely	/ IV	18	
 	107	1	100	-		Brownish grey, highly weather grained sandstone. Characterise ,horizontal to sub vertical in	d by closely spaced	IV	>20	
	 106	1	100	12		Brownish grey, highly weather grained sandstone. Characterise ,horizontal to sub vertical in	d by closely spaced	IV	>20	
13 	105	1	98	13		Brownish grey, highly weather grained sandstone. Characterise ,horizontal to sub vertical in	d by closely spaced	IV	11	•
14 15	104	1	98	10		Brownish grey, dark grey, tinge slightly weathered, medium to sandstone. Characterised by close to sub vertical irregula	fine grained shaly ely spaced horizonta	Ш	11	
15 16	103	1	98	32		Dark grey, tinge green, mode weathered, fine grained shale. closely to widely spaced, horiz regular fracture st	Characterised by zontal, smooth and	Ш	12	
 17	102	1	97	67		Dark grey, tinge green, slight grained shale. Characterised t horizontal, smooth and regula	y closely spaced,	II	9	
_	101	1	96	55		Brownish grey, tinge green, s medium to fine grained sandstou closely Tto widely spaced ,horiz irregular fractu	ne. Characterised by contal to sub vertical		11	
18 	100	1	96	-		Brownish grey, tinge green, s medium to fine grained sandstor closely Tto widely spaced ,horiz irregular fractures.	ne. Characterised by contal to sub vertical		9	
19 	 99	1	90	52		Brownish grey, dark grey, tin weathered, medium to fine grain Characterised by closely to wide to sub vertical irregular fr	ned shaly sandstone. ly spaced, horizonta		6	
KEY		Clayey Sil	ty Sand		Sandstone	Shale		Note: See app notes for deta and basis of d	ils of abbi	reviations

APPENDIX C

Atterberg Limits

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

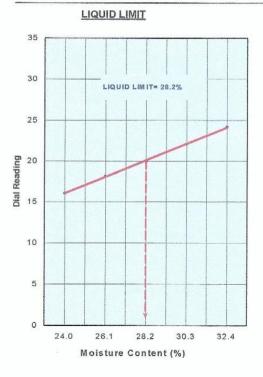
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT ATTERBERG LIMITS: CONE PENETROMETER BS 1377: Part 2 BH 01(0.0-2.0M)

Site: MWACHE W.T.P

Location: KWALE

Date Received: 23-07-21

Sample Classification: SOIL SAMPLE


Lab Ref: TM/RGS-MWACHE/3884

Sample No. <u>3884</u> Date Tested: <u>01-08-21</u>

Sampled by: REGIONAL GEOPHYSICAL SURVEY Depth: 0.0 - 2.0M

		LI	QUID LIN	AIT		PLASTIC LIMIT	
Container No.	co	NE	PE	NO	TR	OM	TA
Initial Dial Reading (mm)	0	0	0	0	0	-	-
Final Dial Reading (mm)	16.1	18.2	20.0	22.1	24.2	-	-
Mass of Container+Wet Soil, M2 (g)	117.2	116.0	116.4	107.5	114.5	30.4	32.9
Mass of Container+Dry Soil, M3 (g)	94.5	92.0	90.8	80.7	86.5	26.2	28.4
Mass of Container M1 (g)	-	-	-	-	-	-	-
Mass of Moisture (M2-M3) (g)	22.7	24.0	25.6	26.8	28.0	4.2	4.5
Mass of Dry Soil (M3-M1) (g)	94.5	92.0	90.8	88.4	86.5	26.2	28.4
Moisture Content (%)	24.0	26.1	28.2	30.3	32.4	16.0	15.8

PLASTIC LIMIT = 15.9%

LINEAR SHRINKAGE

LS = 1 - <u>Length of dried sample</u> x 100 Initial Length of sample

= 5.8%

PLASTICITY INDEX/PLASTICITY MODULUS

Liquid limit, LL= 28.2%

Plasticity Index, PI = LL - PL = <u>12.3%</u>

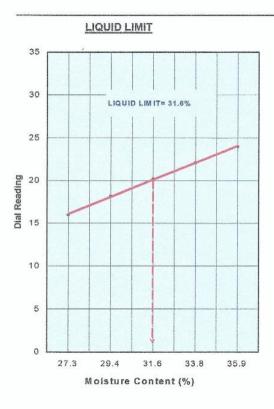
Plasticity Modulus = Pl x 0.425mm % pass = $\frac{673}{2}$

USCS	AASHTO
GC	A-6

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT ATTERBERG LIMITS: CONE PENETROMETER BS 1377: Part 2 BH 02(0.0-1.85M)


 Site:
 MWACHE W.T.P
 Location:
 KWALE
 Date Received:
 23-07-21

 Sample Classification:
 SOIL SAMPLE
 Lab Ref:
 TM/RGS-MWACHE/3888
 Sample No.
 3888

 Sampled by:
 REGIONAL GEOPHYSICAL SURVEY
 Depth:
 0.0 - 1.85M
 Date Tested:
 01-08-21

		LI	QUID LIN	TIN		PLASTIC LIMIT		
Container No.	MU	TU	GA	WA	KI	OK	TE	
Initial Dial Reading (mm)	0	0	0	0	0	-	-	
Final Dial Reading (mm)	16.0	18.2	20.2	22.1	24.0	-	-	
Mass of Container+Wet Soil, M2 (g)	112.7	111.8	109.0	111.2	121.4	31.1	33.6	
Mass of Container+Dry Soil, M3 (g)	88.5	86.4	82.8	80.7	89.3	26.5	28.7	
Mass of Container M1 (g)	-	-	-	-	-	-	-	
Mass of Moisture (M2-M3) (g)	24.2	25.4	26.2	30.5	32.1	4.6	4.9	
Mass of Dry Soil (M3-M1) (g)	88.5	86.4	82.8	90.2	89.3	26.5	28.7	
Moisture Content (%)	27.3	29.4	31.6	33.8	35.9	17.3	17.1	

PLASTIC LIMIT = 17.2%

LINEAR SHRINKAGE

LS = 1 - Length of dried sample x 100 Initial Length of sample

= 6.8%

PLASTICITY INDEX/PLASTICITY MODULUS

Liquid limit, LL= 31.6%

Plasticity Index, PI = LL - PL= <u>14.4%</u>

Plasticity Modulus = Pl x 0.425mm % pass = <u>1411</u>

USCS	AASHTO
CL	A-6

Tested by: KEVIN

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT ATTERBERG LIMITS: CONE PENETROMETER BS 1377: Part 2 BH 03(0.0-2.0M)

Site: MWACHE W.T.P

Email: danellilab3@gmail.com

Web site: www.danellilab.com

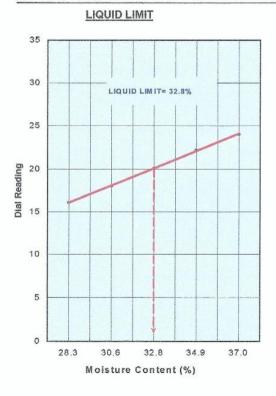
info@danellilab.com

Location: <u>KWALE</u>

Sample No. 3893

Date Received: 23-07-21

Sample Classification: SOIL SAMPLE


Sampled by: REGIONAL GEOPHYSICAL SURVEY

Lab Ref: TM/RGS-MWACHE/3893 Depth: 0.0 - 2.0M

Date Tested: 01-08-21

		LI		/IIT		PLASTIC LIMIT	
Container No.	LT	QU	ID	LI	MI	TA	TN
Initial Dial Reading (mm)	0	0	0	0	0	-	-
Final Dial Reading (mm)	16.1	18.0	20.1	22.2	24.0	-	-
Mass of Container+Wet Soil, M2 (g)	105.6	110.5	113.9	111.4	122.2	32.0	34.2
Mass of Container+Dry Soil, M3 (g)	82.3	84.6	85.8	80.7	89.2	27.2	29.1
Mass of Container M1 (g)	-	-	-	-	-	-	-
Mass of Moisture (M2-M3) (g)	23.3	25.9	28.1	30.7	33.0	4.8	5.1
Mass of Dry Soil (M3-M1) (g)	82.3	84.6	85.8	87.9	89.2	27.2	29.1
Moisture Content (%)	28.3	30.6	32.8	34.9	37.0	17.7	17.5

PLASTIC LIMIT = 17.6%

LINEAR SHRINKAGE

LS = 1 - <u>Length of dried sample</u> x 100 Initial Length of sample

= 7.2%

PLASTICITY INDEX/PLASTICITY MODULUS

Liquid limit, LL= 32.8%

Plasticity Index, PI = LL - PL = <u>15.2%</u>

Plasticity Modulus = Pl x 0.425mm % pass = $\frac{1111}{111}$

USCS	AASHTO
GC	A-6

Tested by: KEVIN

Head Office & Laboratories:

Mobil

Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel

P.O.Box 64932
bil Plaza 00620
Nairobi
Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT ATTERBERG LIMITS: CONE PENETROMETER BS 1377: Part 2 BH 04(0.0-2.0M)

Site: MWACHE W.T.P

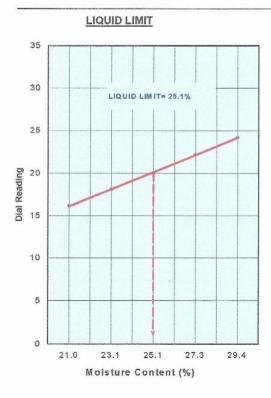
Email: danellilab3@gmail.com info@danellilab.com

Web site: www.danellilab.com

Location: KWALE

Lab Ref: TM/RGS-MWACHE/3898 Depth: 0.0 - 2.0M

Date Received: 23-07-21 Sample No. 3898


Date Tested: 01-08-21

Sampled by: REGIONAL GEOPHYSICAL SURVEY

Sample Classification: SOIL SAMPLE

		LI	QUID LIN	/IIT		PLASTIC LIMIT		
Container No.	VI	DA	OU	GO	OM	AN	NE	
Initial Dial Reading (mm)	0	0	0	0	0	-	-	
Final Dial Reading (mm)	16.2	18.1	20.0	22.2	24.2	-	-	
Mass of Container+Wet Soil, M2 (g)	111.9	115.0	113.2	105.2	111.0	27.3	29.7	
Mass of Container+Dry Soil, M3 (g)	92.5	93.4	90.5	80.7	85.8	24.1	26.2	
Mass of Container M1 (g)	-	-	-	-	-	-	-	
Mass of Moisture (M2-M3) (g)	19.4	21.6	22.7	24.5	25.2	3.2	3.5	
Mass of Dry Soil (M3-M1) (g)	92.5	93.4	90.5	89.6	85.8	24.1	26.2	
Moisture Content (%)	21.0	23.1	25.1	27.3	29.4	13.4	13.2	

LINEAR SHRINKAGE

LS = 1 - <u>Length of dried sample</u> x 100 Initial Length of sample

= 5.6%

PLASTICITY INDEX/PLASTICITY MODULUS

Liquid limit, LL= 25.1%

Plasticity Index, PI = LL - PL = 11.8%

Plasticity Modulus = Pl x 0.425mm % pass = 1165

USCS	AASHTO
CL	A-6

Tested by: KEVIN

Head Office & Laboratories:

Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel

P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT ATTERBERG LIMITS: CONE PENETROMETER BS 1377: Part 2 BH 05(0.0-1.5M)

Site: MWACHE W.T.P

Email: danellilab3@gmail.com

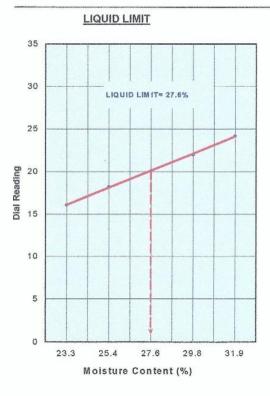
Web site: www.danellilab.com

info@danellilab.com

Location: KWALE

Lab Ref: TM/RGS-MWACHE/3904 Sample No. 3904

Sample Classification: SOIL SAMPLE Sampled by: REGIONAL GEOPHYSICAL SURVEY


Depth: 0.0 - 1.5M

Date Tested: 01-08-21

Date Received: 23-07-21

		LI	QUID LIN	/IIT		PLASTIC LIMIT	
Container No.	MU	SE	MB	IN	NY	NG	KV
Initial Dial Reading (mm)	0	0	0	0	0	-	-
Final Dial Reading (mm)	16.1	18.2	20.1	22.0	24.2	-	-
Mass of Container+Wet Soil, M2 (g)	101.2	106.1	109.5	106.7	120.4	31.4	33.8
Mass of Container+Dry Soil, M3 (g)	82.1	84.6	85.8	80.7	91.3	26.8	28.9
Mass of Container M1 (g)	-	-	-	-	-	-	-
Mass of Moisture (M2-M3) (g)	19.1	21.5	23.7	26.0	29.1	4.6	4.9
Mass of Dry Soil (M3-M1) (g)	82.1	84.6	85.8	87.2	91.3	26.8	28.9
Moisture Content (%)	23.3	25.4	27.6	29.8	31.9	17.1	16.9

PLASTIC LIMIT = 17.0%

LINEAR SHRINKAGE

LS = 1 - Length of dried sample x 100 Initial Length of sample

= 5.0%

PLASTICITY INDEX/PLASTICITY MODULUS

Liquid limit, LL= 27.6%

Plasticity Index, PI = LL - PL = 10.6%

Plasticity Modulus = Pl x 0.425mm % pass = 913

USCS	AASHTO
SC	A-6

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road

Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT ATTERBERG LIMITS: CONE PENETROMETER BS 1377: Part 2 BH 06(0.0-2.0M)

Site: MWACHE W.T.P

Email: danellilab3@gmail.com

Web site: www.danellilab.com

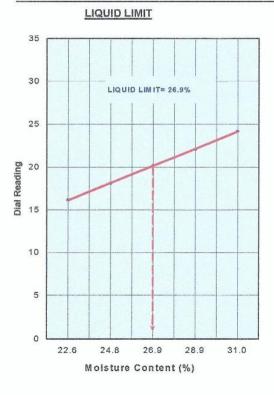
info@danellilab.com

Location: KWALE

Date Received: 23-07-21

Sample Classification: SOIL SAMPLE

Sampled by: REGIONAL GEOPHYSICAL SURVEY


Lab Ref: <u>TM/RGS-MWACHE/3910</u> Depth: <u>0.0 - 2.0M</u>

Sample No. 3910

Date Tested: 01-08-21

		LI		PLASTIC LIMIT			
Container No.	LO	CA	TI	ON	OC	MA	LI
Initial Dial Reading (mm)	0	0	0	0	0	-	-
Final Dial Reading (mm)	16.2	18.1	20.2	22.1	24.2	-	-
Mass of Container+Wet Soil, M2 (g)	104.3	109.3	114.0	107.2	122.9	29.3	31.8
Mass of Container+Dry Soil, M3 (g)	85.1	87.6	89.8	80.7	93.8	25.6	27.8
Mass of Container M1 (g)	-	-	-	-	-	-	-
Mass of Moisture (M2-M3) (g)	19.2	21.7	24.2	26.5	29.1	3.7	4.0
Mass of Dry Soil (M3-M1) (g)	85.1	87.6	89.8	91.6	93.8	25.6	27.8
Moisture Content (%)	22.6	24.8	26.9	28.9	31.0	14.6	14.4

PLASTIC LIMIT = 14.5%

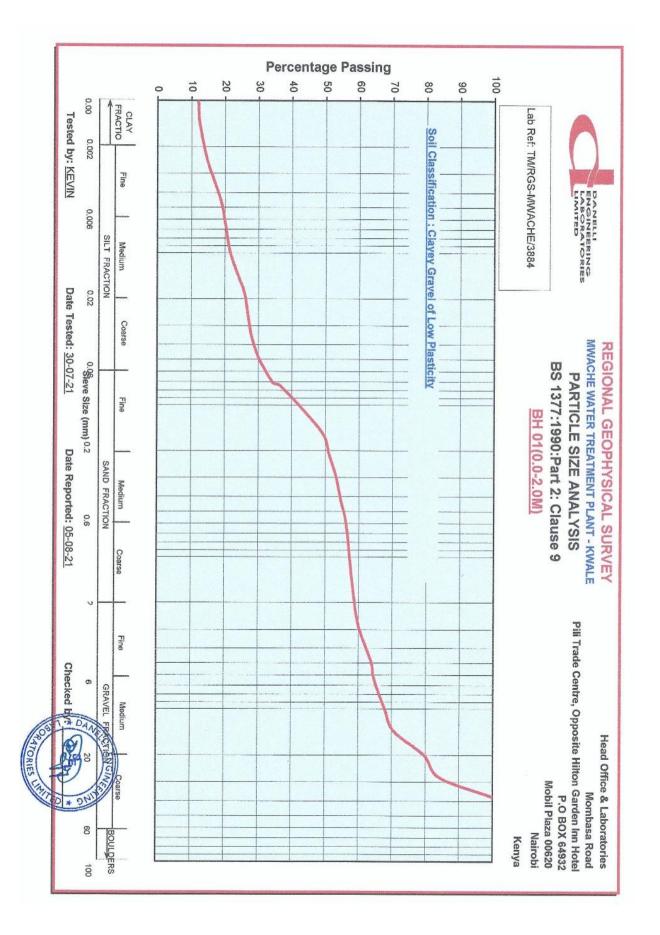
LINEAR SHRINKAGE

LS = 1 - <u>Length of dried sample x 100</u> Initial Length of sample

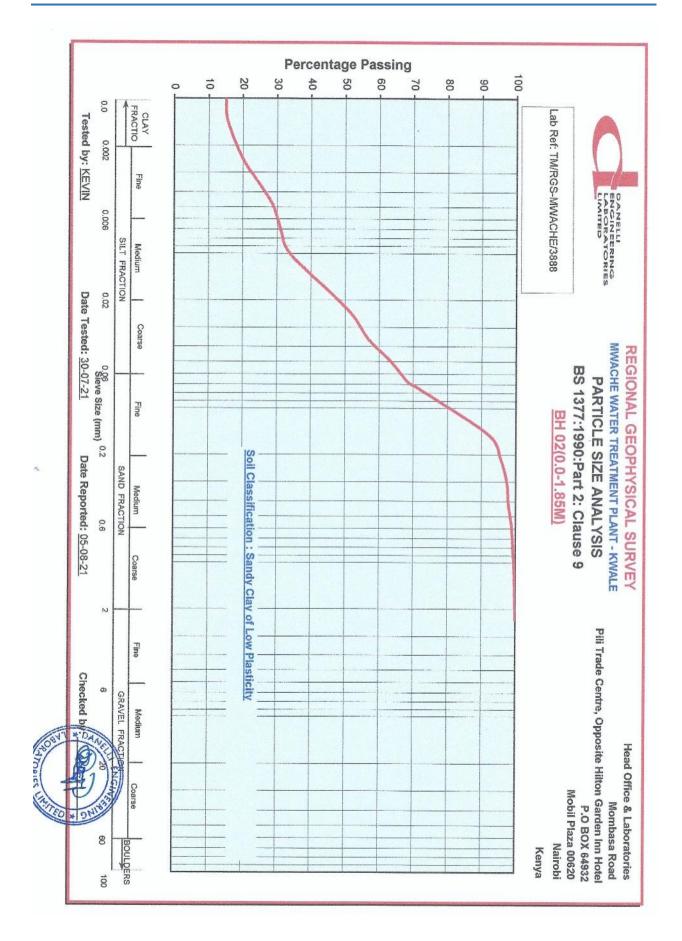
= 5.8%

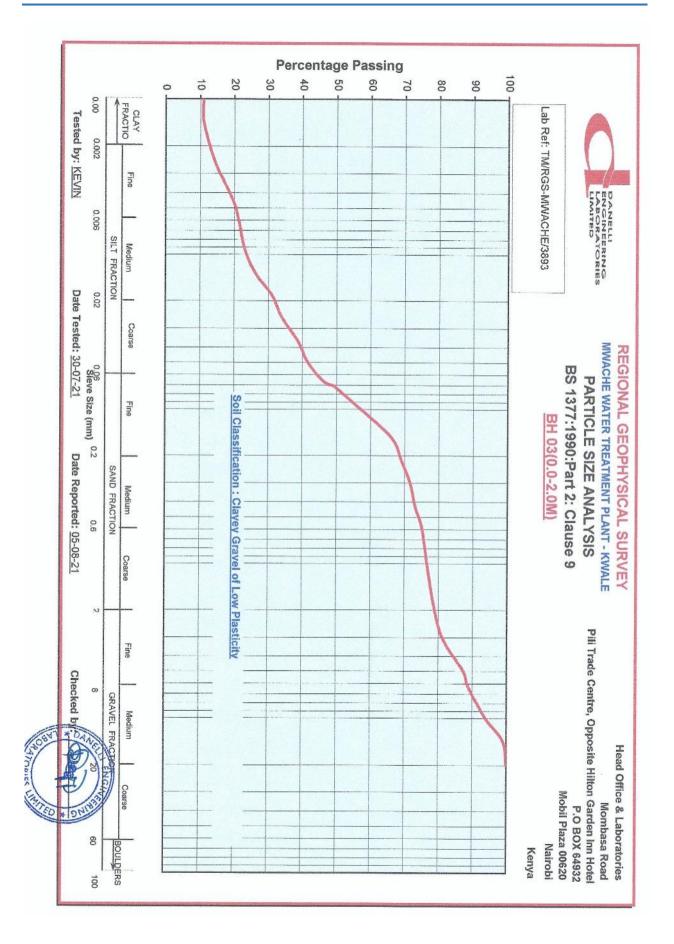
PLASTICITY INDEX/PLASTICITY MODULUS

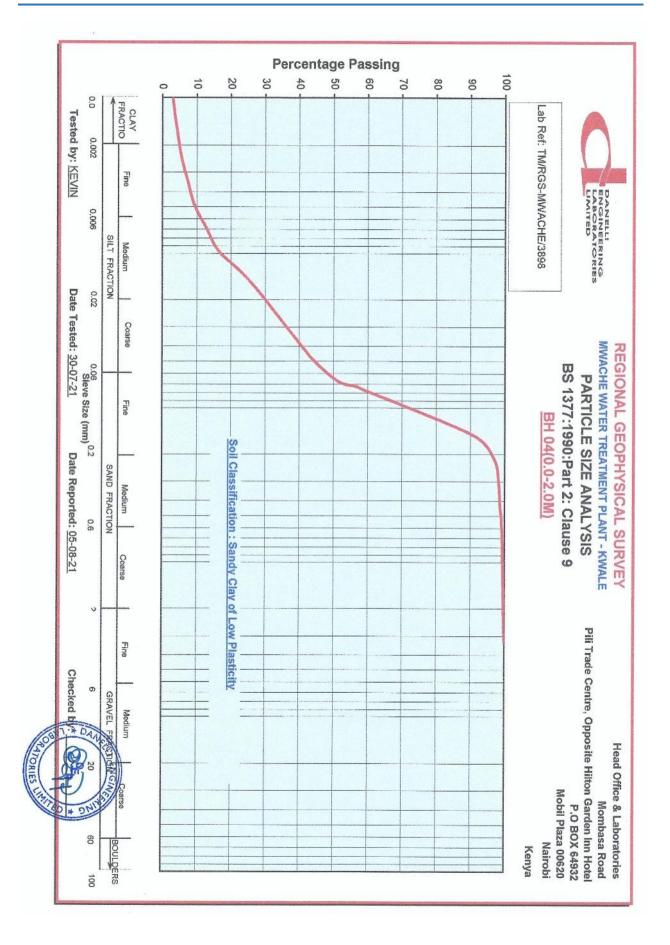
Liquid limit, LL= 26.9%

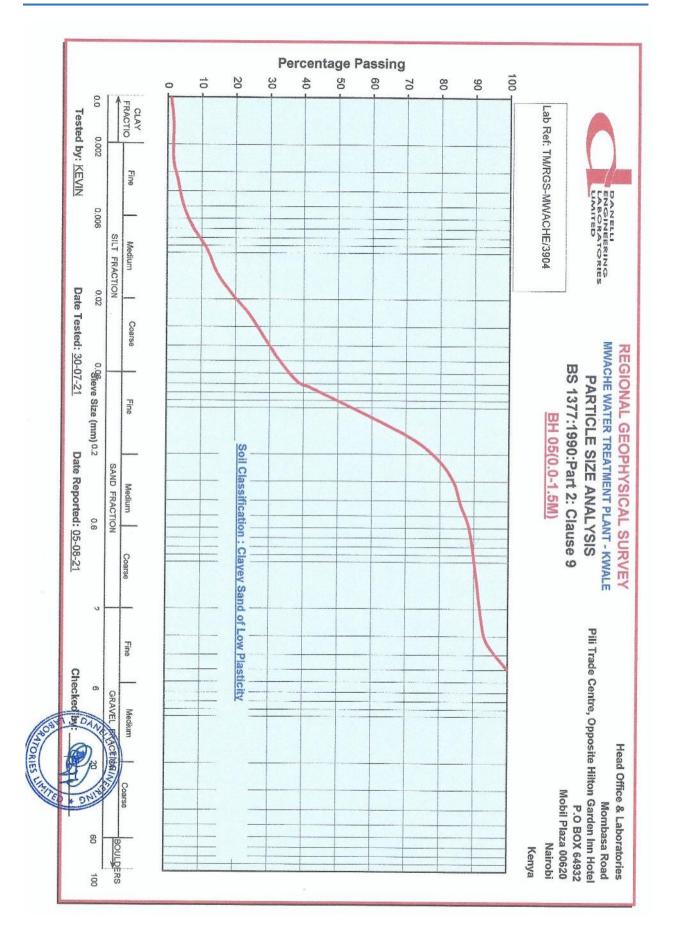

Plasticity Index, PI = LL - PL= <u>12.4%</u>

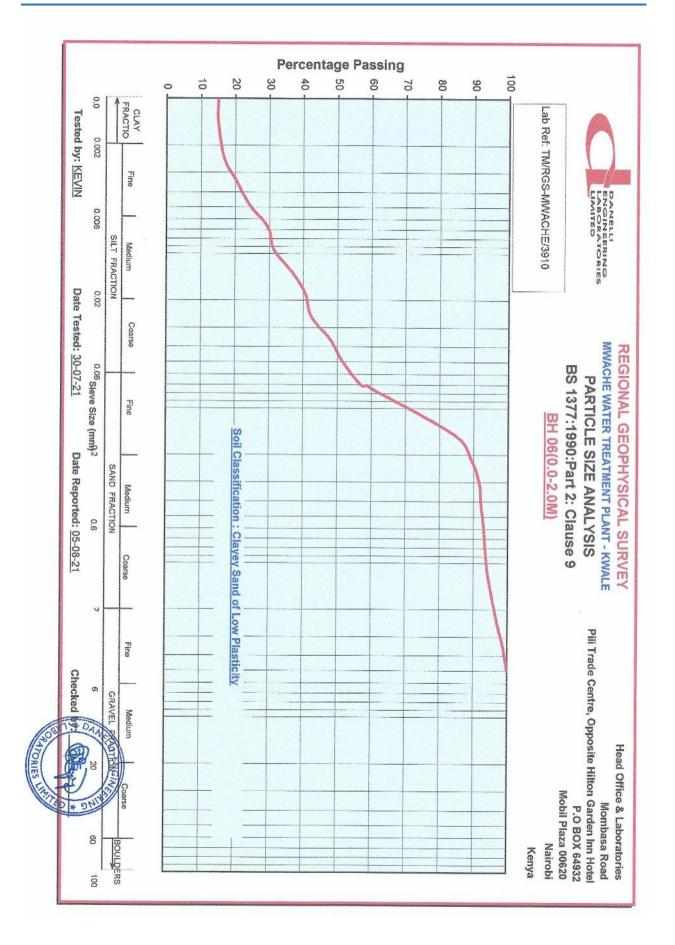
Plasticity Modulus = Pl x 0.425mm % pass = $\frac{1143}{2}$


USCS	AASHTO
SC	A-6


Tested by: KEVIN






Particle Size Distribution – Grading Curves

Particle Size Distribution – Hydrometer Data

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT Particle Size Distribution: Hydrometer Method BS 1377: Part 2:1990 BH 01 (Depth: 0.0-2.0m)

Site: MWACHE W. T. P	Location: KWALE	Date Received: 23-07-21
Sample Classification: _	Lab Ref: TM/RGS-MWACHE/3884	Sample No. 3884
Sampled by: REGIONAL GEOPHYSICAL SURVEY	Depth: -	Date Tested: 30-07-21

General Information

Dry Weight, g	40	Hydrometer Type	152H
Specific Gravity (Assumed)	2.60	Zero Correction	2
Temperature (⁰ C)	21	S.G Correction Factor	1.01
K Factor	0.01369	Temperature Correction Factor	0.40

Test Data

Time (Min)	Actual Hydrometer Reading	Adjusted Hydrometer Reading (R _h)	Composite Correction	Corrected Hydrometer Reading	Effective Hydrometer Depth (cm)	Diameter of Particles (mm)	% Finer in Suspension	% Finer Based or Whole Sample
0.25	18.0	19.0	-3.4	15.60	13.3	0.0987	94.4	34.7
0.5	17.0	18.0	-3.4	14.60	13.5	0.0703	88.3	32.5
1	16.0	17.0	-3.4	13.60	13.7	0.0499	82.3	30.3
2	15.0	16.0	-3.4	12.60	13.8	0.0358	76.2	28.1
4	14.5	15.5	-3.4	12.10	13.9	0.0256	73.2	26.9
8	14.0	15.0	-3.4	11.60	14.0	0.0182	70.2	25.8
15	13.0	14.0	-3.4	10.60	14.2	0.0134	64.1	23.6
30	12.0	13.0	-3.4	9.60	14.3	0.0095	58.1	21.4
60	11.5	12.5	-3.4	9.10	14.4	0.0068	55.1	20.3
120	11.0	12.0	-3.4	8.60	14.5	0.0048	52.0	19.1
240	10.0	11.0	-3.4	7.60	14.7	0.0034	46.0	16.9
480	9.0	10.0	-3.4	6.60	14.8	0.0024	39.9	14.7
1440	8.0	9.0	-3.4	5.60	15.0	0.0014	33.9	12.5

Tested by: KEVIN

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT Particle Size Distribution: Hydrometer Method BS 1377: Part 2:1990

BH 02 (Depth: 0.0-1.85m)

Site: MWACHE W. T. P	Location: KWALE	Date Received: 23-07-21
Sample Classification: _	Lab Ref: TM/RGS-MWACHE/3888	Sample No. 3888
Sampled by: REGIONAL GEOPHYSICAL SURVEY	Depth: _	Date Tested: 30-07-21

General Information

Dry Weight, g	40	Hydrometer Type	152H
Specific Gravity (Assumed)	2.60	Zero Correction	4
Temperature (⁰ C)	21	S.G Correction Factor	1.01
K Factor	0.01369	Temperature Correction Factor	0.40

Test Data

Time (Min)	Actual Hydrometer Reading	Adjusted Hydrometer Reading (R _h)	Composite Correction	Corrected Hydrometer Reading	Effective Hydrometer Depth (cm)	Diameter of Particles (mm)	% Finer in Suspension	% Finer Based on Whole Sample
0.25	20.5	21.5	-5.4	16.10	12.9	0.0987	97.4	69.9
0.5	20.0	21.0	-5.4	15.60	13.0	0.0703	94.4	67.8
1	19.0	20.0	-5.4	14.60	13.2	0.0499	88.3	63.4
2	17.5	18.5	-5.4	13.10	13.4	0.0358	79.3	56.9
4	16.5	17.5	-5.4	12.10	13.6	0.0256	73.2	52.6
8	15.0	16.0	-5.4	10.60	13.8	0.0182	64.1	46.0
15	13.5	14.5	-5.4	9.10	14.1	0.0134	55.1	39.5
30	12.0	13.0	-5.4	7.60	14.3	0.0095	46.0	33.0
60	11.5	12.5	-5.4	7.10	14.4	0.0068	43.0	30.8
120	11.0	12.0	-5.4	6.60	14.5	0.0048	39.9	28.7
240	10.0	11.0	-5.4	5.60	14.7	0.0034	33.9	24.3
480	9.0	10.0	-5.4	4.60	14.8	0.0024	27.8	20.0
1440	8.0	9.0	-5.4	3.60	15.0	0.0014	21.8	15.6

Tested by: KEVIN

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT Particle Size Distribution: Hydrometer Method BS 1377: Part 2:1990 BH 03 (Depth: 0.0-2.0m)

Site: MWACHE W. T. P	Location: KWALE	Date Received: 23-07-21
Sample Classification: _	Lab Ref: TM/RGS-MWACHE/3893	Sample No. 3893
Sampled by: REGIONAL GEOPHYSICAL SURVEY	Depth: -	Date Tested: 30-07-21

General Information

Dry Weight, g	40	Hydrometer Type	152H
Specific Gravity (Assumed)	2.60	Zero Correction	6
Temperature (° C)	21	S.G Correction Factor	1.01
K Factor	0.01369	Temperature Correction Factor	0.40

Test Data

Time (Min)	Actual Hydrometer Reading	Adjusted Hydrometer Reading (R _h)	Composite Correction	Corrected Hydrometer Reading	Effective Hydrometer Depth (cm)	Diameter of Particles (mm)	% Finer in Suspension	% Finer Based on Whole Sample
0.25	22.5	23.5	-7.4	16.10	12.6	0.0987	97.4	49.3
0.5	21.5	22.5	-7.4	15.10	12.8	0.0703	91.4	46.2
1	20.0	21.0	-7.4	13.60	13.0	0.0499	82.3	41.6
2	19.0	20.0	-7.4	12.60	13.2	0.0358	76.2	38.6
4	17.5	18.5	-7.4	11.10	13.4	0.0256	67.2	34.0
8	16.5	17.5	-7.4	10.10	13.6	0.0182	61.1	30.9
15	15.0	16.0	-7.4	8.60	13.8	0.0134	52.0	26.3
30	14.0	15.0	-7.4	7.60	14.0	0.0095	46.0	23.3
60	13.5	14.5	-7.4	7.10	14.1	0.0068	43.0	21.7
120	13.0	14.0	-7.4	6.60	14.2	0.0048	39.9	20.2
240	12.0	13.0	-7.4	5.60	14.3	0.0034	33.9	17.1
480	11.0	12.0	-7.4	4.60	14.5	0.0024	27.8	14.1
1440	10.0	11.0	-7.4	3.60	14.7	0.0014	21.8	11.0

Tested by: KEVIN

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT Particle Size Distribution: Hydrometer Method BS 1377: Part 2:1990

BH 04 (Depth: 0.0-2.0m)

Site: MWACHE W. T. P	Location: KWALE	Date Received: 23-07-21
Sample Classification: <u>-</u>	Lab Ref: TM/RGS-MWACHE/3898	Sample No. 3898
Sampled by: REGIONAL GEOPHYSICAL SURVEY	Depth: -	Date Tested: 30-07-21

General Information

Dry Weight, g	40	Hydrometer Type	152H
Specific Gravity (Assumed)	2.60	Zero Correction	5
Temperature (⁰ C)	21	S.G Correction Factor	1.01
K Factor	0.01369	Temperature Correction Factor	0.40

Test Data

Time (Min)	Actual Hydrometer Reading	Adjusted Hydrometer Reading (R _h)	Composite Correction	Corrected Hydrometer Reading	Effective Hydrometer Depth (cm)	Diameter of Particles (mm)	% Finer in Suspension	% Finer Based or Whole Sample
0.25	21.5	22.5	-6.4	16.10	12.8	0.0987	97.4	56.7
0.5	20.0	21.0	-6.4	14.60	13.0	0.0703	88.3	51.4
1	18.0	19.0	-6.4	12.60	13.3	0.0499	76.2	44.4
2	16.5	17.5	-6.4	11.10	13.6	0.0358	67.2	39.1
4	15.0	16.0	-6.4	9.60	13.8	0.0256	58.1	33.8
8	13.5	14.5	-6.4	8.10	14.1	0.0182	49.0	28.5
15	12.0	13.0	-6.4	6.60	14.3	0.0134	39.9	23.2
30	10.0	11.0	-6.4	4.60	14.7	0.0095	27.8	16.2
60	9.0	10.0	-6.4	3.60	14.8	0.0068	21.8	12.7
120	8.0	9.0	-6.4	2.60	15.0	0.0048	15.7	9.2
240	7.5	8.5	-6.4	2.10	15.1	0.0034	12.7	7.4
480	7.0	8.0	-6.4	1.60	15.2	0.0024	9.7	5.6
1440	6.5	7.5	-6.4	1.10	15.2	0.0014	6.7	3.9

Tested by: KEVIN

Email: danellilab3@gmail.com info@danellilab.com

Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT Particle Size Distribution: Hydrometer Method BS 1377: Part 2:1990

BH 05 (Depth: 0.0-1.5 m)

Site: MWACHE W. T. P	Location: KWALE	Date Received: 23-07-21
Sample Classification: _	Lab Ref: TM/RGS-MWACHE/3904	Sample No. 3904
Sampled by: REGIONAL GEOPHYSICAL SURVEY	Depth: _	Date Tested: 30-07-21

General Information

Dry Weight, g	40	Hydrometer Type	152H
Specific Gravity (Assumed)	2.60	Zero Correction	3
Temperature (⁰ C)	21	S.G Correction Factor	1.01
K Factor	0.01369	Temperature Correction Factor	0.40

Test Data

Time (Min)	Actual Hydrometer Reading	Adjusted Hydrometer Reading (R _h)	Composite Correction	Corrected Hydrometer Reading	Effective Hydrometer Depth (cm)	Diameter of Particles (mm)	% Finer In Suspension	% Finer Based or Whole Sample
0.25	18.0	19.0	-4.4	14.60	13.3	0.0987	88.3	41.5
0.5	16.5	17.5	-4.4	13.10	13.6	0.0703	79.3	37.2
1	15.0	16.0	-4.4	11.60	13.8	0.0499	70.2	33.0
2	13.5	14.5	-4.4	10.10	14.1	0.0358	61.1	28.7
4	12.0	13.0	-4.4	8.60	14.3	0.0256	52.0	24.5
8	10.0	11.0	-4.4	6.60	14.7	0.0182	39.9	18.8
15	8.5	9.5	-4.4	5.10	14.9	0.0134	30.9	14.5
30	7.5	8.5	-4.4	4.10	15.1	0.0095	24.8	11.7
60	6.0	7.0	-4.4	2.60	15.3	0.0068	15.7	7.4
120	5.0	6.0	-4.4	1.60	15.5	0.0048	9.7	4.5
240	4.5	5.5	-4.4	1.10	15.5	0.0034	6.7	3.1
480	4.0	5.0	-4.4	0.60	15.6	0.0024	3.6	1.7
1440	4.0	5.0	-4.4	0.60	15.6	0.0014	3.6	1.7

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT Particle Size Distribution: Hydrometer Method BS 1377: Part 2:1990

BH 06 (Depth: 0.0-2.0m)

Site: MWACHE W. T. P	Location: KWALE	Date Received: 23-07-21
Sample Classification: _	Lab Ref: TM/RGS-MWACHE/3910	Sample No. 3910
Sampled by: REGIONAL GEOPHYSICAL SURVEY	Depth: -	Date Tested: 30-07-21

General Information

Dry Weight, g	40	Hydrometer Type	152H
Specific Gravity (Assumed)	2.60	Zero Correction	3
Temperature (⁰ C)	21	S.G Correction Factor	1.01
K Factor	0.01369	Temperature Correction Factor	0.40

Test Data

Time (Min)	Actual Hydrometer Reading	Adjusted Hydrometer Reading (R _h)	Composite Correction	Corrected Hydrometer Reading	Effective Hydrometer Depth (cm)	Diameter of Particles (mm)	% Finer in Suspension	% Finer Based on Whole Sample
0.25	19.5	20.5	-4.4	16.10	13.1	0.0987	97.4	58.8
0.5	19.0	20.0	-4.4	15.60	13.2	0.0703	94.4	57.0
1	17.5	18.5	-4.4	14.10	13.4	0.0499	85.3	51.5
2	16.5	17.5	-4.4	13.10	13.6	0.0358	79.3	47.9
4	15.0	16.0	-4.4	11.60	13.8	0.0256	70.2	42.4
8	14.5	15.5	-4.4	11.10	13.9	0.0182	67.2	40.6
15	13.5	14.5	-4.4	10.10	14.1	0.0134	61.1	36.9
30	12.0	13.0	-4.4	8.60	14.3	0.0095	52.0	31.4
60	11.5	12.5	-4.4	8.10	14.4	0.0068	49.0	29.6
120	10.0	11.0	-4.4	6.60	14.7	0.0048	39.9	24.1
240	9.0	10.0	-4.4	5.60	14.8	0.0034	33.9	20.5
480	8.0	9.0	-4.4	4.60	15.0	0.0024	27.8	16.8
1440	7.5	8.5	-4.4	4.10	15.1	0.0014	24.8	15.0

Tested by: KEVIN

Standard Proctor Density

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

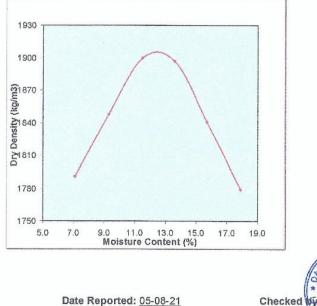
REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Dry Density/Moisture Content Relationship

BS 1377: Part 4: 1990

BH 01(0.0-2.0M)


Date Received: 23-07-21 Site: MWACHE W.T.P Location: KWALE Sample Classification: SOIL SAMPLE Lab Ref: TM/RGS-MWACHE/3884 Sample No. 3884 Sampled by: REGIONAL GEOPHYSICAL SURVEY Depth: 0.0 - 2.0M

Date Tested: 29-07-21

Moisture Addition	200cc	250cc	300cc	350cc	400cc	450cc
Mass of Mould+Base+Soil	5353	5449	5541	5576	5552	5522
Mass of Mould + Base	3550	3550	3550	3550	3550	3550
Mass of Compacted Soil	1803	1899	1991	2026	2002	1972
Bulk Density (kgs/m ³)	1918	2020	2119	2155	2130	2097
Tin No.	MW	AC	HE	DA	MU	KE
Wgt of Wet Soil + Tin	113.1	118.3	123.3	126.3	121.4	129.2
Wgt of Dry Soil + Tin	105.6	108.2	110.6	111.2	104.9	109.6
Wgt of Water	7.5	10.1	12.7	15.1	16.5	19.6
Wgt of Tin						
Wgt of Dry Soil	105.6	108.2	110.6	111.2	104.9	109.6
Moisture Content %	7.1	9.3	11.5	13.6	15.7	17.9
Dry Density (Kgs/m ³)	1791	1848	1900	1897	1841	1779

Maximum Dry Density = 1905Kg/m³

Optimum Moisture Content = 12.5%

Tested by: KEVIN

ARTELIA / MIBP / SEPTEMBER 2021 / 877 3361

Date Reported: 05-08-21

ORIES

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Dry Density/Moisture Content Relationship

BS 1377: Part 4: 1990

BH 02(0.0-1.85M)

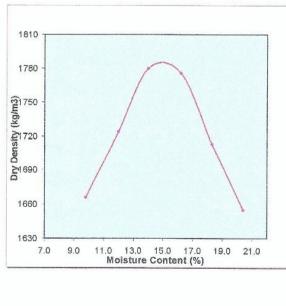
Site: MWACHE W.T.P

Sample Classification: SOIL SAMPLE

Location: KWALE

Lab Ref: TM/RGS-MWACHE/3888

Date Received: 23-07-21 Sample No. 3888


Date Tested: 29-07-21

Sampled by: REGIONAL GEOPHYSICAL SURVEY Depth: 0.0 -1.85M

Method of Compaction: standard **Moisture Addition** 200cc 250cc 300cc 350cc 400cc 450cc Mass of Mould+Base+Soil 5270 5365 5457 5490 5455 5423 Mass of Mould + Base 3550 3550 3550 3550 3550 3550 Mass of Compacted Soil 1720 1815 1907 1940 1905 1873 Bulk Density (kgs/m³) 1829 1931 2029 2064 2026 1993 Tin No. MU SY OK AW KA LE Wgt of Wet Soil + Tin 131.9 137.2 135.0 139 0 136.5 141 1 Wgt of Dry Soil + Tin 120.1 122.5 118.4 119.6 115.4 117.2 Wgt of Water 14.7 16.6 11.8 19.4 21.1 23.9 Wgt of Tin Wgt of Dry Soil 120.1 122.5 118.4 119.6 115.4 117.2 Moisture Content % 12.0 9.8 14.0 16.2 18.3 20.4 Dry Density (Kgs/m³) 1666 1724 1780 1776 1713 1655

Maximum Dry Density = 1785Kg/m³

Optimum Moisture Content = 15.0%

Checked

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Dry Density/Moisture Content Relationship

BS 1377: Part 4: 1990

BH 03(0.0-2.0M)

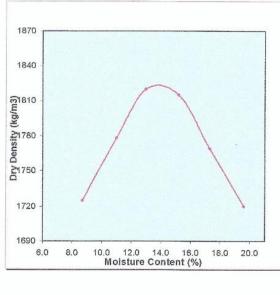
Site: MWACHE W.T.P

Location: KWALE

Date Received: 23-07-21

Sample Classification: SOIL SAMPLE

Lab Ref: TM/RGS-MWACHE/3893


Sample No. 3893 Date Tested: 29-07-21

Sampled by: REGIONAL GEOPHYSICAL SURVEY Depth: 0.0 - 2.0M

Moisture Addition	200cc	250cc	300cc	350cc	400cc	450cc
Mass of Mould+Base+Soil	5313	5405	5483	5515	5501	5482
Mass of Mould + Base	3550	3550	3550	3550	3550	3550
Mass of Compacted Soil	1763	1855	1933	1965	1951	1932
Bulk Density (kgs/m ³)	1875	1974	2057	2091	2075	2055
Tin No.	KA	LE	KY	EN	IN	YN
Wgt of Wet Soil + Tin	117.3	125.9	131.6	125.8	123.5	133.8
Wgt of Dry Soil + Tin	107.9	113.4	116.5	109.2	105.3	112.0
Wgt of Water	9.4	12.5	15.1	16.6	18.2	21.8
Wgt of Tin	_			1		
Wgt of Dry Soil	107.9	113.4	116.5	109.2	105.3	112.0
Moisture Content %	8.7	11.0	13.0	15.2	17.3	19.5
ry Density (Kgs/m ³)	1725	1778	1820	1815	1769	1720

Maximum Dry Density = 1823Kg/m³

Optimum Moisture Content = 13.8%

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Dry Density/Moisture Content Relationship

BS 1377: Part 4: 1990

BH 04(0.0-2.0M)

Site: MWACHE W.T.P

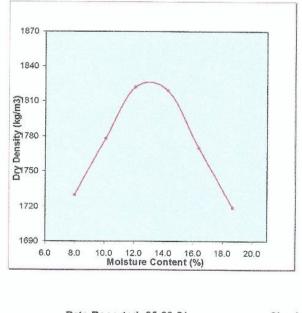
Sample Classification: SOIL SAMPLE

Location: <u>KWALE</u>

Lab Ref: TM/RGS-MWACHE/3898

Date Received: 23-07-21

Date Tested: 29-07-21


Sample No. 3898

Sampled by: REGIONAL GEOPHYSICAL SURVEY Depth: 0.0 - 2.0M

Method of Compaction: standard **Moisture Addition** 200cc 250cc 300cc 350cc 400cc 450cc Mass of Mould+Base+Soil 5306 5390 5470 5504 5487 5468 Mass of Mould + Base 3550 3550 3550 3550 3550 3550 Mass of Compacted Soil 1756 1840 1920 1954 1937 1918 Bulk Density (kgs/m³) 1868 1958 2042 2079 2060 2040 Tin No. JO MW AK KE NE DY Wgt of Wet Soil + Tin 129.2 134.1 138.6 142.9 144.6 143.5 Wgt of Dry Soil + Tin 119.6 121.8 123.6 125.0 124.2 120.9 Wgt of Water 9.6 12.3 15.0 17.9 20.4 22.6 Wgt of Tin Wgt of Dry Soil 119.6 121.8 123.6 125.0 124.2 120.9 Moisture Content % 8.0 10.1 12.1 14.3 16.4 18.7 Dry Density (Kgs/m³) 1730 1778 1822 1819 1770 1719

Maximum Dry Density = 1827Kg/m³

Optimum Moisture Content = 13.1%

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Dry Density/Moisture Content Relationship

BS 1377: Part 4: 1990

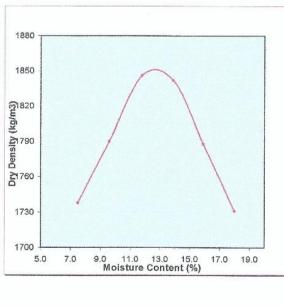
BH 05(0.0-1.5M)

Site: MWACHE W.T.P

Location: KWALE

Sample Classification: SOIL SAMPLE

Lab Ref: TM/RGS-MWACHE/3904


Date Received: <u>23-07-21</u> Sample No. <u>3904</u> Date Tested: <u>29-07-21</u>

Sampled by: REGIONAL GEOPHYSICAL SURVEY Depth: 0.0 - 1.5M

Moisture Addition	100cc	150cc	200cc	250cc	300cc	350cc
Mass of Mould+Base+Soil	5306	5394	5490	5522	5498	5470
Mass of Mould + Base	3550	3550	3550	3550	3550	3550
Mass of Compacted Soil	1756	1844	1940	1972	1948	1920
Bulk Density (kgs/m ³)	1868	1962	2064	2098	2072	2043
Tin No.	MA	KA	MI	NI	EK	OE
Wgt of Wet Soil + Tin	134.2	138.5	142.1	140.3	145.8	152.1
Wgt of Dry Soil + Tin	124.8	126.4	127.1	123.2	125.8	128.9
Wgt of Water	9.4	12.1	15.0	17.1	20.0	23.2
Wgt of Tin			121			
Wgt of Dry Soil	124.8	126.4	127.1	123.2	125.8	128.9
Moisture Content %	7.5	9.6	11.8	13.9	15.9	18.0
Dry Density (Kgs/m ³)	1738	1790	1846	1842	1788	1731

Maximum Dry Density = 1851Kg/m³

Optimum Moisture Content = 12.6%

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Dry Density/Moisture Content Relationship

BS 1377: Part 4: 1990

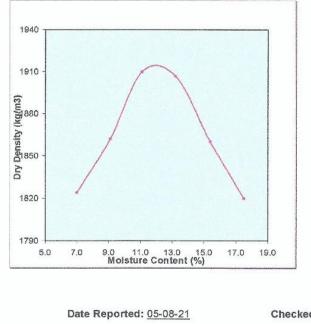
BH 06(0.0-2.0M)

Site: MWACHE W.T.P

Location: KWALE

Sample Classification: SOIL SAMPLE

Lab Ref: TM/RGS-MWACHE/3910


Date Received: <u>23-07-21</u> Sample No. <u>3910</u> Date Tested: <u>29-07-21</u>

Sampled by: REGIONAL GEOPHYSICAL SURVEY Depth: 0.0 - 2.0M

Moisture Addition	150cc	200cc	250cc	300cc	350cc	400cc
Mass of Mould+Base+Soil	5385	5460	5545	5579	5568	5560
Mass of Mould + Base	3550	3550	3550	3550	3550	3550
Mass of Compacted Soil	1835	1910	1995	2029	2018	2010
Bulk Density (kgs/m ³)	1952	2031	2122	2159	2146	2139
Tin No.	MO	IS	ΤU	RE	CO	NT
Wgt of Wet Soil + Tin	130.0	131.6	131.5	131.0	136.1	145.5
Wgt of Dry Soil + Tin	121.5	120.6	118.4	115.7	117.9	123.8
Wgt of Water	8.5	11.0	13.1	15.3	18.2	21.7
Wgt of Tin		_	_	00220		
Wgt of Dry Soil	121.5	120.6	118.4	115.7	117.9	123.8
Moisture Content %	7.0	9.1	11.1	13.2	15.4	17.5
ry Density (Kgs/m ³)	1824	1862	1910	1907	1860	1820

Maximum Dry Density = 1915Kg/m³

Optimum Moisture Content = 12.0%

Tested by: KEVIN

Independent Materials testing Email: danellilab3@gmail.com Web site: www.danellilab.com Mob: +254(0) 726 721 935
aterials testing b3@gmail.com danellilab.com 26 721 935
Independent Materials testing & inspection Centre Email: daneliliab3@gmail.com Web site: www.daneliliab.com Mob: +254(0) 726 721 935

ENGINEERING LABORATORIES

Kenva	
Nairobi	
Mobil Plaza 00620	
P.O. Box 64932	
Trade Centre, Opposite Hilton Garden Inn Hotel	Frade Centre
Mombasa Road	
Head Office & Laboratories:	Heac

Pili

REPUBLIC OF KENYA – COAST WATER WORKS DEVELOPMENT AGENCY MWACHE WATER TREATMENT PLANT GEOTECHNICAL REPORT

Natural Moisture Content

DO 10//. 1990 Fait 4. Clause o
Site:
TIM/RGS-IMV/ACHE KWALE 2 104.2 1.2 1.2 1.2

TORIES

Client:	REGIONAL GE	REGIONAL GEOPHYSICAL SURVEY	JRVEY	Job Reference:	TM/RGS-MWACHE	ACHE	Date of Test:	30-07-21	
Project:	MWACHE WAT	MWACHE WATER TREATMENT PLANT	JT PLANT	Location:	KWALE		Site:	MWACHE W.T.P	(T.P
Material Description	SOIL SAMPLES	ß							
Sample Reference.	ence.	8	BH01	BH02			BH03	BH04	04
Depth (m):	:	0.0	0.0-2.0M	0.0-1.85M	W	0.	0.0-2.0M	0.0-2.0M	.oM
Sample No.	o.	3	3884	3888			3893	3898	8
Test No.		-	2	4	2	4	2	-	2
Initial Weight of Sample (g)	ample (g)	77.0	151.1	88.1	82.2	120.2	93.3	122.0	85.2
Weight of Dry Sample (g)	ımple (g)	76.1	149.0	85.1	79.0	116.1	90.2	121.0	84.1
Weight of Water (g)	er (g)	0.9	2.1	3.0	3.2	4.1	3.1	1.0	1.1
% Moisture Content	ontent	1.2	1.4	3.5	4.1	3.5	3.4	0.8	1.3
Average Moisture Content (%)	Content (%)		1.3	80			3.5	1.1	

REPUBLIC OF KENYA – COAST WATER WORKS DEVELOPMENT AGENCY MWACHE WATER TREATMENT PLANT GEOTECHNICAL REPORT

ARTELIA / MIBP / SEPTEMBER 2021 / 877 3361

Independent Materials testing & inspection Centre Email: danellilab3@gmail.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

DANELLI ENGINEERING LABORATORIES LIMITED

Specific Gravity of Soils

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity Test BS 1377: Part 2: 1990: Clause 8 BH 01(Depth: 0.0-2.0m)

Site: <u>MWACHE W.T.P</u> Location: <u>KWALE</u>

Date Received: 23-07-21

Material Description: SOIL SAMPLE

Lab Ref: TM/RGS-MWACHE/3884

Sample No: <u>3884</u>

Sampled by: REGIONAL GEOPHYSICAL SURVEY Source: SITE

Date Tested: 02-08-21

	TEST NO.	1	2	Average Values
A	The mass of saturated surface dry in (g)	-	-	
в	The mass of Density bottle or wide mouthed glass vessel containing sample & filled with water (g)	96.8	96.2	
с	The mass of Density bottle or wide mouthed glass vessel filled with water only (g)	81.6	81.6	
D	The mass of oven-dried sample in (g)	24.2	23.3	
Relativ	ve Density on an oven-dried basis =D/A-(B-C)	-	-	
Relativ	/e Density on a saturated & surface-dried basis = A/A-(B-C)	-	-	
Appar	ent Relative Density = D/D-(B-C)	2.69	2.68	2.69
Water	Absorption (% of dry mass) =100(A-D)/D	-		

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity Test BS 1377: Part 2: 1990: Clause 8 BH 02(Depth: 0.0-1.85m)

Site: MWACHE W.T.P

Location: KWALE

Date Received: 23-07-21

Material Description: SOIL SAMPLE

Lab Ref: TM/RGS-MWACHE/3888

Sample No: <u>3888</u> Date Tested: 02-08-21

Sampled by: REGIONAL GEOPHYSICAL SURVEY Source: SITE

	TEST NO.	1	2	Average Values
А	The mass of saturated surface dry in (g)	1	-	
в	The mass of Density bottle or wide mouthed glass vessel containing sample & filled with water (g)	99.5	105.8	
С	The mass of Density bottle or wide mouthed glass vessel filled with water only (g)	81.6	81.6	
D	The mass of oven-dried sample in (g)	28.8	38.8	
Relati	ve Density on an oven-dried basis =D/A-(B-C)	-	-	
Relati	ve Density on a saturated & surface-dried basis = A/A-(B-C)	-	-	
Appar	ent Relative Density = D/D-(B-C)	2.64	2.66	2.65
Water	Absorption (% of dry mass) =100(A-D)/D	-	-	

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity Test BS 1377: Part 2: 1990: Clause 8 BH 03(Depth: 0.0-2.0m)

Site: MWACHE W.T.P

Location: KWALE

Date Received: 23-07-21

Material Description: SOIL SAMPLE

Lab Ref: TM/RGS-MWACHE/3893

Sample No: <u>3893</u> Date Tested: <u>02-08-21</u>

Sampled by: <u>REGIONAL GEOPHYSICAL SURVEY</u> Source: <u>SITE</u>

	TEST NO.	1	2	Average Values
A	The mass of saturated surface dry in (g)	-	-	
в	The mass of Density bottle or wide mouthed glass vessel containing sample & filled with water (g)	103.2	102.2	
с	The mass of Density bottle or wide mouthed glass vessel filled with water only (g)	81.6	81.6	
D	The mass of oven-dried sample in (g)	34.9	33.5	
Relati	ve Density on an oven-dried basis =D/A-(B-C)	-		
Relati	ve Density on a saturated & surface-dried basis = A/A-(B-C)	-	-	
Appar	ent Relative Density = D/D-(B-C)	2.62	2.60	2.61
Water	Absorption (% of dry mass) =100(A-D)/D			

Tested by: KEVIN

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity Test BS 1377: Part 2: 1990: Clause 8 BH 04(Depth: 0.0-2.0m)

Site: MWACHE W.T.P

Location: KWALE

Date Received: 23-07-21

Material Description: SOIL SAMPLE

Lab Ref: TM/RGS-MWACHE/3898

Sample No: <u>3898</u> Date Tested: <u>02-08-21</u>

Sampled by: REGIONAL GEOPHYSICAL SURVEY Source: SITE

	TEST NO.	1	2	Average Values
А	The mass of saturated surface dry in (g)	-	-	
в	The mass of Density bottle or wide mouthed glass vessel containing sample & filled with water (g)	103.5	103.6	
с	The mass of Density bottle or wide mouthed glass vessel filled with water only (g)	81.6	81.6	
D	The mass of oven-dried sample in (g)	34.9	35.2	
Relati	ve Density on an oven-dried basis =D/A-(B-C)	-	-	
Relati	ve Density on a saturated & surface-dried basis = A/A-(B-C)	-	-	
Appar	ent Relative Density = D/D-(B-C)	2.68	2.67	2.68
Water	Absorption (% of dry mass) =100(A-D)/D	-	-	

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity Test BS 1377: Part 2: 1990: Clause 8 BH 05(Depth: 0.0-1.5m)

Site: MWACHE W.T.P

Location: KWALE

Date Received: 23-07-21

Material Description: SOIL SAMPLE

Lab Ref: TM/RGS-MWACHE/3904

Date Tested: 02-08-21

Sample No: 3904

Sampled by: REGIONAL GEOPHYSICAL SURVEY Source: SITE

	TEST NO.	1	2	Average Values
A	The mass of saturated surface dry in (g)	-		
в	The mass of Density bottle or wide mouthed glass vessel containing sample & filled with water (g)	102.2	100.6	
с	The mass of Density bottle or wide mouthed glass vessel filled with water only (g)	81.6	81.6	
D	The mass of oven-dried sample in (g)	32.8	30.2	
Relati	ve Density on an oven-dried basis =D/A-(B-C)	-	-	
Relati	ve Density on a saturated & surface-dried basis = A/A-(B-C)	-	-	
Appar	ent Relative Density = D/D-(B-C)	2.69	2.70	2.70
Water	Absorption (% of dry mass) =100(A-D)/D	-	-	

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity Test BS 1377: Part 2: 1990: Clause 8 BH 06(Depth: 0.0-2.0m)

Site: MWACHE W.T.P

Location: KWALE

Date Received: 23-07-21

Material Description: SOIL SAMPLE

Lab Ref: TM/RGS-MWACHE/3910

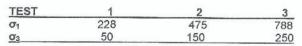
Sample No: <u>3910</u> Date Tested: 02-08-21

Sampled by: REGIONAL GEOPHYSICAL SURVEY Source: SITE

	TEST NO.	1	2	Average Values
А	The mass of saturated surface dry in (g)	-	-	
в	The mass of Density bottle or wide mouthed glass vessel containing sample & filled with water (g)	99.5	101.0	
с	The mass of Density bottle or wide mouthed glass vessel filled with water only (g)	81.6	81.6	
D	The mass of oven-dried sample in (g)	28.6	30.8	
Relati	ve Density on an oven-dried basis =D/A-(B-C)	-	-	10040
Relati	ve Density on a saturated & surface-dried basis = A/A-(B-C)	-		
Appar	ent Relative Density = D/D-(B-C)	2.67	2.70	2.69
Water	Absorption (% of dry mass) =100(A-D)/D	-	-	

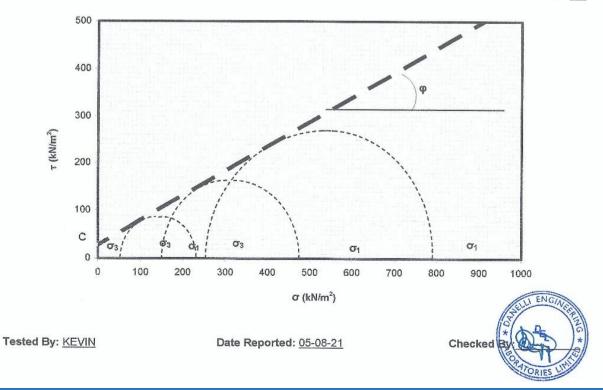
Tested by: KEVIN

Unconsolidated Undrained Triaxial Test


Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT Quick Undrained Triaxial Test BS 1377: Part 8: 1990 BH 01 (Depth: 0.0-2.0m)

Site: MWACHE W.T.P	Location: KWALE	Date Received: 23-07-21
Soil Type: DISTURBED	Lab Ref: TM/RGS-MWACHE/3884	Sample No. : 3884
Mean Diameter of Sample: 62 mm	Height of Sample: 125 mm	Mean Area: 3019.1 mm ²
Weight of Specimen: 768.3 grams	Volume of Specimen: 377.38 cm ³	Date of Test: 02-08-21


TEST	1	2	3	
Cell Pressure (kN/m²)	50	150	250	
Principal Stress difference at failure (kN/m ²)	178	325	538	

a) TOTAL STRESS ANALYSIS

 $c = 28 \text{ kN/m}^2$

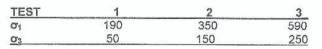
φ =<u>28°</u>

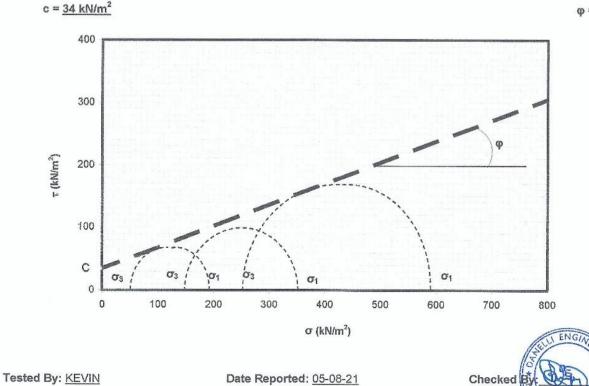
Email: danellilab3@gmail.com

Web site: www.danellilab.com Mob: +254(0) 726 721 935

info@danellilab.com

Head Office & Laboratories:


Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya


REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT Quick Undrained Triaxial Test BS 1377: Part 8: 1990 BH 02 (Depth: 0.0-1.85m)

Site: MWACHE W.T.P	Location: KWALE	Date Received: 23-07-21
Soil Type: DISTURBED	Lab Ref: TM/RGS-MWACHE/3888	Sample No. : 3888
Mean Diameter of Sample: 62 mm	Height of Sample: 125 mm	Mean Area: 3019.1 mm ²
Weight of Specimen: 735.9 grams	Volume of Specimen: <u>377.38 cm³</u>	Date of Test: 02-08-21

TEST	1	2	3
Cell Pressure (kN/m ²)	50	150	250
Principal Stress difference at failure (kN/m ²)	140	200	340

a) TOTAL STRESS ANALYSIS

φ =19°

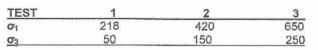
ARTELIA / MIBP / SEPTEMBER 2021 / 877 3361

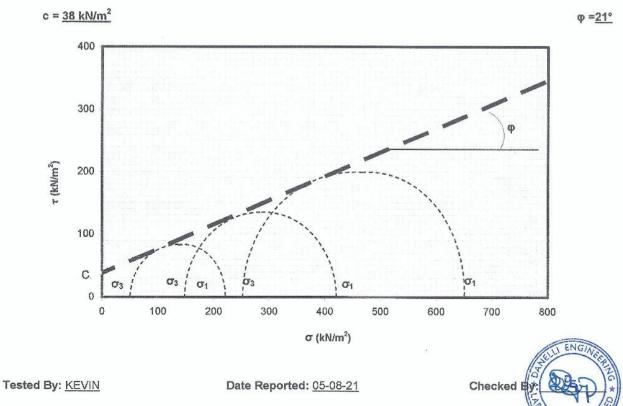
Email: danellilab3@gmail.com

Web site: www.danellilab.com Mob: +254(0) 726 721 935

info@danellilab.com

Head Office & Laboratories:


Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya


REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT Quick Undrained Triaxial Test BS 1377: Part 8: 1990 BH 03 (Depth: 0.0-2.0m)

Site: MWACHE W.T.P	Location: KWALE	Date Received: 23-07-21
Soil Type: DISTURBED	Lab Ref: TM/RGS-MWACHE/3893	Sample No. : 3893
Mean Diameter of Sample: 62 mm	Height of Sample: 125 mm	Mean Area: 3019.1 mm ²
Weight of Specimen: 743.8 grams	Volume of Specimen: <u>377.38 cm³</u>	Date of Test: 02-08-21

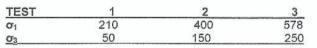
TEST	1	2	3
Cell Pressure (kN/m ²)	50	150	250
Principal Stress difference at failure (kN/m ²)	168	270	400

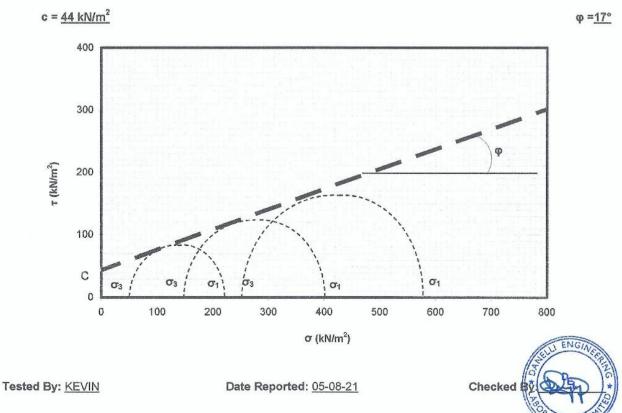
a) TOTAL STRESS ANALYSIS

ARTELIA / MIBP / SEPTEMBER 2021 / 877 3361

Head Office & Laboratories:

Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya


Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935


REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT Quick Undrained Triaxial Test BS 1377: Part 8: 1990 BH 04 (Depth: 0.0-2.0m)

Site: MWACHE W.T.P	Location: KWALE	Date Received: 23-07-21
Soil Type: DISTURBED	Lab Ref: TM/RGS-MWACHE/3898	Sample No. : 3898
Mean Diameter of Sample: 62 mm	Height of Sample: 125 mm	Mean Area: <u>3019.1 mm²</u>
Weight of Specimen: 740.8 grams	Volume of Specimen: 377.38 cm ³	Date of Test: 02-08-21

TEST	1	2	3
Cell Pressure (kN/m ²)	50	150	250
Principal Stress difference at failure (kN/m ²)	160	250	328

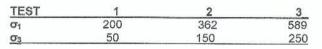
a) TOTAL STRESS ANALYSIS

Email: danellilab3@gmail.com

Web site: www.danellilab.com Mob: +254(0) 726 721 935

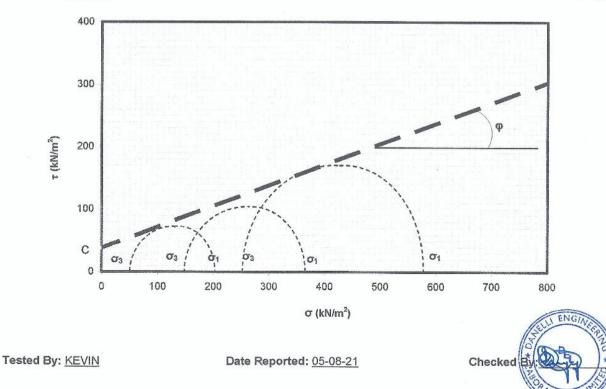
info@danellilab.com

Head Office & Laboratories:


Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT Quick Undrained Triaxial Test BS 1377: Part 8: 1990 BH 05 (Depth: 0.0-1.5m)

Site: MWACHE W.T.P	Location: KWALE	Date Received: 23-07-21
Soil Type: DISTURBED	Lab Ref: TM/RGS-MWACHE/3904	Sample No. : 3904
Mean Diameter of Sample: 62 mm	Height of Sample: 125 mm	Mean Area: <u>3019.1 mm²</u>
Weight of Specimen: 747.2 grams	Volume of Specimen: <u>377.38 cm³</u>	Date of Test: 02-08-21


TEST	1	2	3
Cell Pressure (kN/m ²)	50	150	250
Principal Stress difference at failure (kN/m ²)	150	212	339

a) TOTAL STRESS ANALYSIS

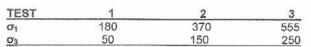
 $\varphi = 18^{\circ}$

Head Office & Laboratories:

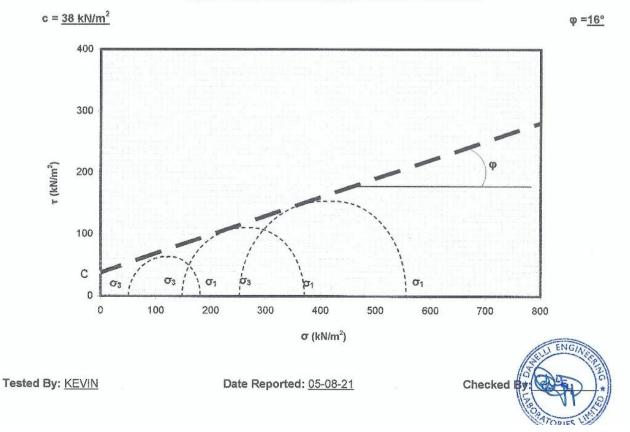
305

Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT **Quick Undrained Triaxial Test** BS 1377: Part 8: 1990


BH 06 (Depth: 0.0-2.0m)

Site: MWACHE W.T.P	Location: KWALE		Date Received: 23-07-21
Soil Type: DISTURBED	Lab Ref: TM/RGS-MV	VACHE/3910	Sample No. : 3910
Mean Diameter of Sample: 62 mm	Height of Sample: <u>12</u>	<u>5 mm</u>	Mean Area: 3019.1 mm ²
Weight of Specimen: 769.1 grams	Volume of Specimer	n: <u>377.38 cm³</u>	Date of Test: 02-08-21
TEST	г 1	2	3
Cell Pressure (kN/m ²)	50	150	250


130

a) TOTAL STRESS ANALYSIS

Principal Stress difference at failure (kN/m²)

220

One-Dimensional Consolidation

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

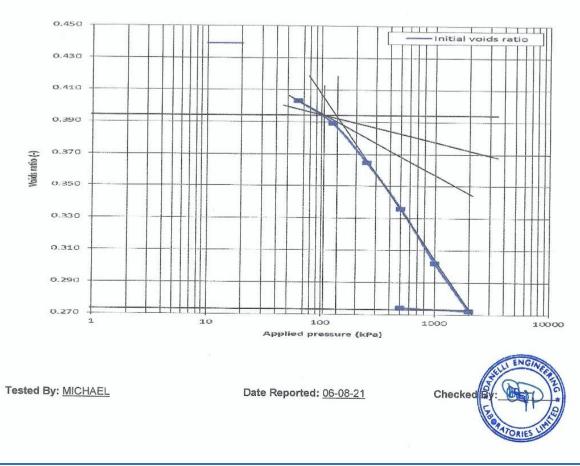
Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES.

Tested in Accordance with BS 1377: 1990: Part 5: Clause 3.

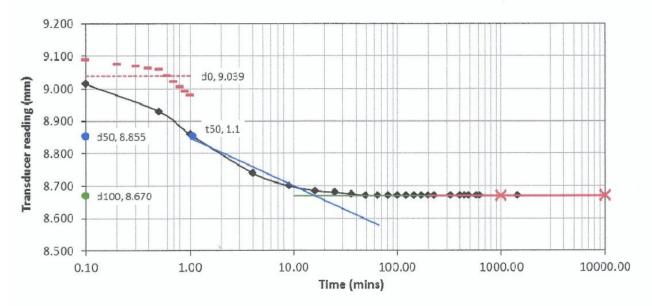
BH 01 (Depth: 0.0-2.0m)


Site: MWACHE W.T.P Classification Group Name: -Ring Diameter: 50.0 mm Area (A): 1963.5mm2 Initial voids ratio: 0.436 Pre-consolidation stress: 150 Kn/m² Coefficient of Re-Compression Index: 0.0266

Location: KWALE Lab Ref: TM/CCL-KORUDAM/3860 Height of soil particles: 13.90mm Moisture Content after Test: 12.5% Assumed Soil Density: 2600 kg/m3

Depth: 0.0-2.0m Sample No. 3860 Height of Ring: 20 mm Bulk Density: 2036kg/m³ Dry Density: 1810kg/m³

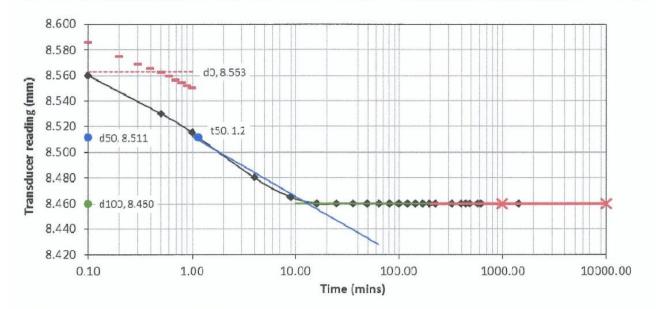
Coefficient of Compression Index: 0.095


Voids Ratio against Applied Pressure

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 01 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	30-07-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 01 (0.0-2.0m)
LOADING	STAGE: No. 1	PRESSURE (kpa)	62.5	MASS (kg)	1.25

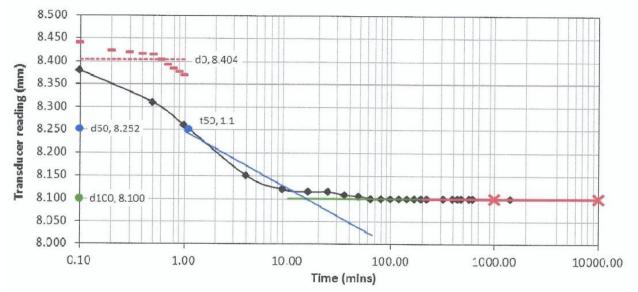
CALCULATIO	NS
Change in Height = 0.530 mm From the plot, t_{50} = =1.1 mins H_1 = 20.00 mm H_2 = 19.47 mm H = (20.00+19.47)/2 = 19.74 mm Co-efficient of Consolidation, $C_v = 0.026 \text{ H}^2$ = <u>9.210 m²/year</u> t_{50} Co-efficient of Secondary Compression, $C_{sec} = = \underline{Nil}$ Co-efficient of volume compressibility, $M_v = \underline{H_1 - H_2} \times \frac{1000}{P_2 - P_1}$ = 0.424 m ² /MN	Specimen information (cumulative) Compression (mm) = 0.530 Net compression (mm) = 0.503 Height mm (H_2) = 19.47 Equivalent height of solids Hs = 13.90 Voids Ratio = (H_2 – Hs)/Hs = 0.40


Tested By: MICHAEL

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO Ince with BS 1377:19		RTIES	
		BH 01 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	31-07-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 01 (0.0-2.0m)
LOADING	STAGE: No. 2	PRESSURE (kpa)	125	MASS (kg)	2.50

CALCULATIO	NS
Change in Height = 0.210 mm From the plot, t_{50} = =1.2 mins H_1 = 19.47 mm H_2 = 19.26 mm H = (19.26+19.47)/2 = 19.37 mm Co-efficient of Consolidation, $C_y = 0.026 \text{ H}^2$ = 8.129 m ² /year t_{50} Co-efficient of Secondary Compression, $C_{sec} = = \underline{Nil}$ Co-efficient of volume compressibility, $M_y = \underline{H_1 - H_2} \times \frac{1000}{P_2 - P_1}$ = 0.173 m ² /MN	Specimen information (cumulative) Compression (mm) = 0.740 Net compression (mm) = 0.695 Height mm (H_2) = 19.26 Equivalent height of solids Hs = 13.90 Voids Ratio = (H_2 – Hs)/Hs = 0.386

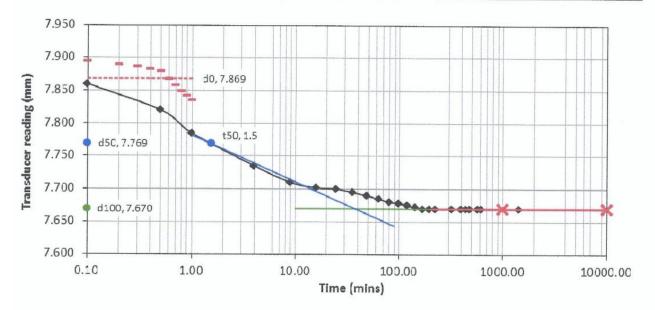

Tested By: MICHAEL

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-E Tested in Accorde	DIMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 01 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	01-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 01 (0.0-2.0m)
LOADING	3 STAGE: No. 3	PRESSURE (kpa)	250	MASS (kg)	5.00

	CALCULATIONS		
= 19.08 Co-efficient of Consolidation Co-efficient of Secondary Co	mins mm 5+18.90)/2 mm , $C_{v} = \frac{0.026 \text{ H}^2}{t_{50}} = \frac{8.605 \text{ m}^2/\text{year}}{t_{50}}$	Specimen information (cumulative) Compression (mm) = 1.100 Net compression (mm) = 1.035 Height mm (H_2) = 18.90 Equivalent height of solids Hs = 13.90 Voids Ratio = ($H_2 - H_s$)/Hs = 0.360	

Tested By: MICHAEL

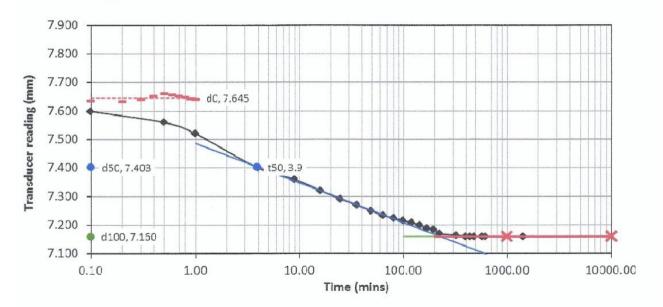


Head Office & Laboratories:

Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accords	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 01 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	02-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 01 (0.0-2.0m)
LOADING	STAGE: No. 4	PRESSURE (kpa)	500	MASS (kg)	10.01

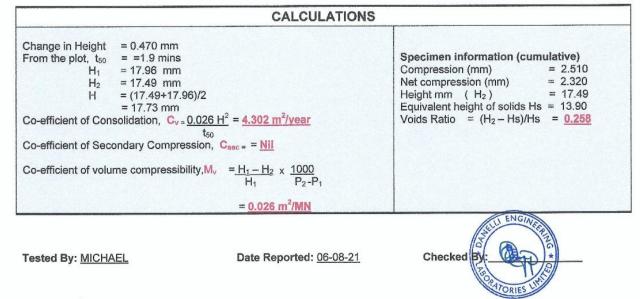

CA	LCULATIONS
Change in Height = 0.430 mm From the plot, t_{50} = =1.5 mins H_1 = 18.90 mm H_2 = 18.47 mm H = (18.47+18.90)/2 = 18.69 mm Co-efficient of Consolidation, $C_v = 0.026 H^2$ = 6.055 m ² /r t_{50} Co-efficient of Secondary Compression, C_{eec} = Nil Co-efficient of volume compressibility, M_v = $H_1 - H_2 \times 10^{-1}$	
H ₁ = <u>0.085 m²</u>	P ₂ -P ₁
Tested By: <u>MICHAEL</u> Date Report	rted: 06-08-21 Checked By

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES Tested in Accordance with BS 1377:1990:Part 5: Clause 3

		BH 01 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	03-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 01 (0.0-2.0m)
LOADING	STAGE: No. 5	PRESSURE (kpa)	1000	MASS (kg)	20.02

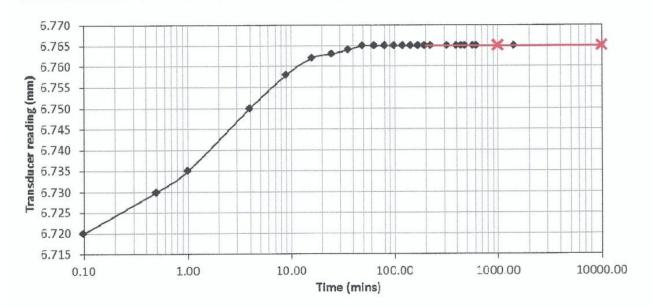
	CALCULATIONS	
Change in Height = 0.510 mm From the plot, t_{50} = =3.9 mins H_1 = 18.47 mm H_2 = 17.96 mm H = (18.47+17 = 18.22 mm Co-efficient of Consolidation, C_v Co-efficient of Secondary Compr Co-efficient of volume compressi	.96)/2 = <u>0.026 H²</u> = <mark>2.213 m²/year</mark> t ₅₀ ession, C _{sec =} = <u>Nil</u>	Specimen information (cumulative) Compression (mm) = 2.040 Net compression (mm) = 1.904 Height mm (H_2) = 17.96 Equivalent height of solids Hs = 13.90 Voids Ratio = ($H_2 - H_3$)/Hs = 0.292
	= <u>0.055 m²/MN</u>	
Tested By: <u>MICHAEL</u>	Date Reported: 06-08-21	Checked By Anories Line

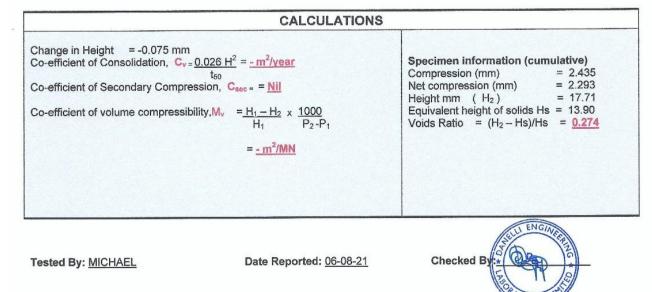


Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES Tested in Accordance with BS 1377:1990:Part 5: Clause 3

		BH 01 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	04-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 01 (0.0-2.0m)
LOADING	STAGE: No. 6	PRESSURE (kpa)	2000	MASS (kg)	40.04





Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ince with BS 1377:19		RTIES	2
		BH 01 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	05-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 01 (0.0-2.0m)
UNLOAD	ING STAGE:	PRESSURE (kpa)	500	MASS (kg)	10.01

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES.

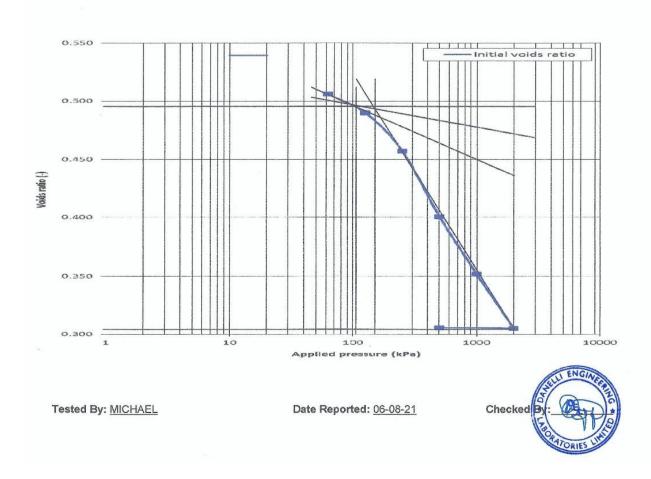
Tested in Accordance with BS 1377: 1990: Part 5: Clause 3.

BH 02 (Depth: 0.0-1.85m)

Site: <u>MWACHE W.T.P</u> Classification Group Name: <u>-</u> Ring Diameter: <u>50.0 mm</u> Area (A): <u>1963.5mm²</u> Initial voids ratio: <u>0.533</u> Pre-consolidation stress: <u>160 Kn/m²</u> Coefficient of Re-Compression Index: 0.0216 Location: <u>KWALE</u> Lab Ref: <u>TM/CCL-KORUDAM/3888</u> Height of soil particles: <u>12.99mm</u> Moisture Content after Test: <u>15.0%</u> Assumed Soil Density: <u>2600 ka/m³</u> C

 Depth: 0.0-1.85m

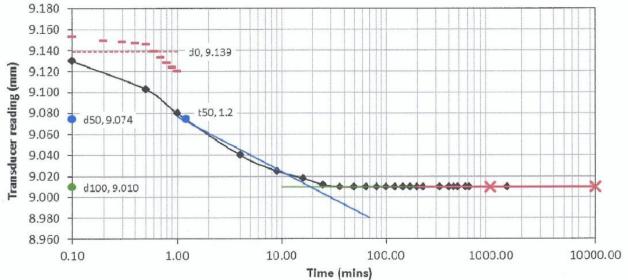
 Sample No. 3888


 Height of Ring: 20 mm

 6
 Bulk Density: 1950kg/m³

 3
 Dry Density: 1696kg/m³

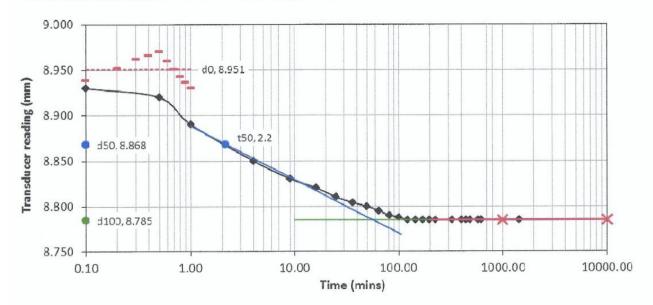
 Coefficient of Compression Index: 0.142

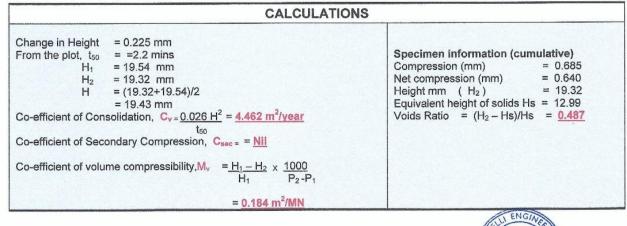

Voids Ratio against Applied Pressure

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ince with BS 1377:19		RTIES	
		BH 02 (0.0-1.85m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	30-07-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 02 (0.0-1.85m
LOADING	STAGE: No. 1	PRESSURE (kpa)	62.5	MASS (kg)	1.25

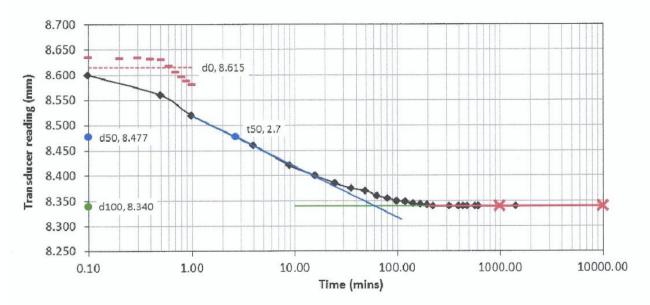
CALCULATIO	NS
Change in Height = 0.460 mm From the plot, t_{50} = =1.2 mins H_1 = 20.00 mm H_2 = 19.54 mm H = (20.00+19.54)/2 = 19.77 mm Co-efficient of Consolidation, $C_v = 0.026 H^2$ = <u>8.468 m²/vear</u> t_{50} Co-efficient of Secondary Compression, $C_{sec} = = Nil$ Co-efficient of volume compressibility, $M_v = \frac{H_1 - H_2}{H_1} \times \frac{1000}{P_2 - P_1}$ = 0.368 m ² /MN	Specimen information (cumulative) Compression (mm)= 0.460 Net compression (mm)= 0.433 Height mm (H2)= 19.54 Equivalent height of solids Hs = 12.99 Voids Ratio= (H2 - H3)/Hs = 0.504


Tested By: MICHAEL



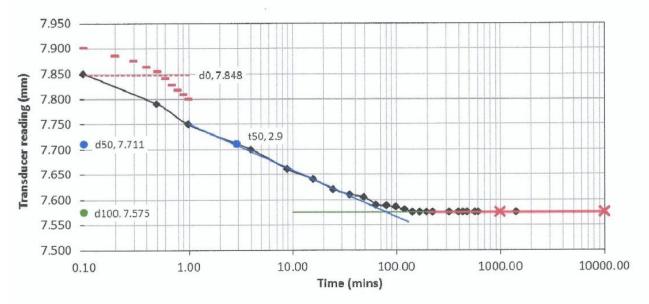
Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ance with BS 1377:19		RTIES		
BH 02 (0.0-1.85m)						
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	31-07-21	
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 02 (0.0-1.85m)	
LOADING	G STAGE: No. 2	PRESSURE (kpa)	125	MASS (kg)	2.50	


Tested By: MICHAEL

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

	DETERMINATION OF ONE-E Tested in Accord	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 02 (0.0-1.85m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	01-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 02 (0.0-1.85m)
LOADING	3 STAGE: No. 3	PRESSURE (kpa)	250	MASS (kg)	5.00

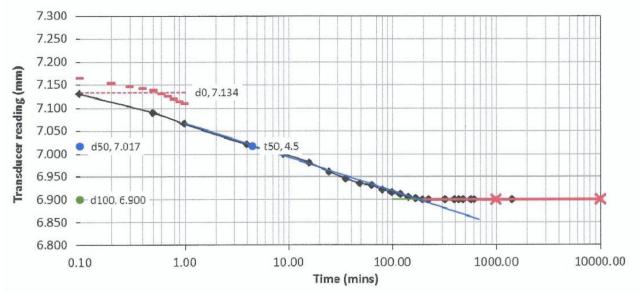

	CALCULATIONS				
H2 H Co-efficient of Con Co-efficient of Sec	= =2.7 mins = 19.32 mm	D _{sec =} = <u>Nil</u>	Specimen information (cumulative) Compression (mm) = 1.130 Net compression (mm) = 1.065 Height mm (H_2) = 18.88 Equivalent height of solids Hs = 12.99 Voids Ratio = ($H_2 - H_5$)/Hs = <u>0.453</u>		
Tested By: MICHA	AEL	Date Reported: 06-08-21	Checked By		

TORIF

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

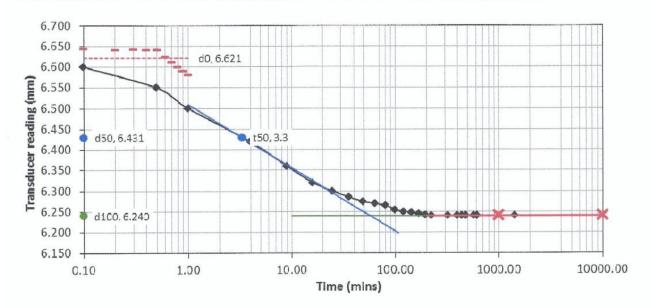
	DETERMINATION OF ONE-D Tested in Accord	IMENSIONAL CO Ince with BS 1377:19		RTIES	
		BH 02 (0.0-1.85m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	02-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 02 (0.0-1.85m)
LOADING	G STAGE: No. 4	PRESSURE (kpa)	500	MASS (kg)	10.01

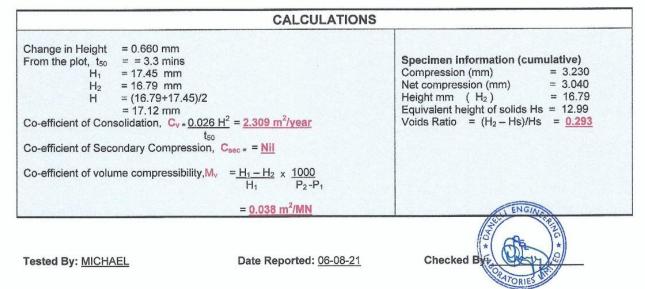
CALCULATIONS		
Change in Height = 0.765 mm From the plot, t_{50} = =2.9 mins H_1 = 18.88 mm H_2 = 18.12 mm H = (18.12+18.88)/2 = 18.50 mm Co-efficient of Consolidation, $C_y = 0.026 H^2$ = <u>3.068 m²/year</u> t_{50} Co-efficient of Secondary Compression, $C_{sec} = Nil$ Co-efficient of volume compressibility, $M_y = H_1 - H_2 \times \frac{1000}{H_1}$ $H_1 = \frac{1000}{P_2 - P_1}$ $= 0.162 m^2/MN$	Specimen information (cumulative) Compression (mm) = 1.895 Net compression (mm) = 1.801 Height mm (H_2) = 18.12 Equivalent height of solids Hs = 12.99 Voids Ratio = ($H_2 - H_s$)/Hs = 0.395	


Tested By: MICHAEL

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

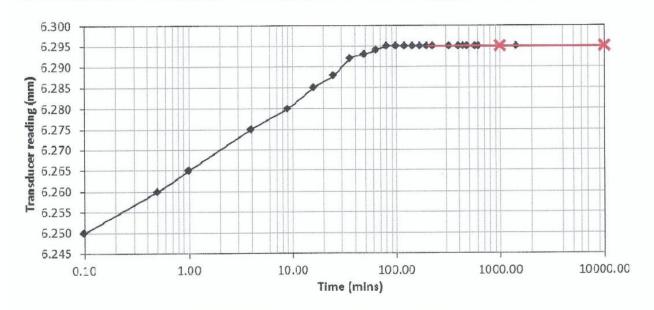
	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 02 (0.0-1.85m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	03-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 02 (0.0-1.85m)
LOADING	S STAGE: No. 5	PRESSURE (kpa)	1000	MASS (kg)	20.02

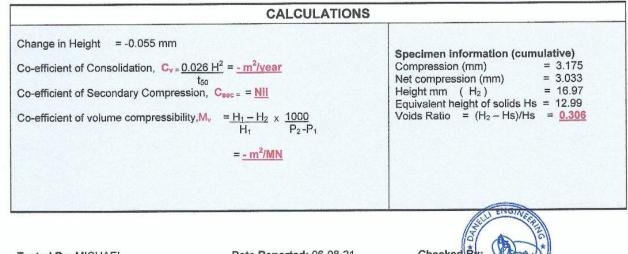



		CALCULATIONS	
H Co-efficient of Con Co-efficient of Seco	= =4.5 mins	• <u>Nil</u> - H ₂ × <u>1000</u>	Specimen information (cumulative) Compression (mm) = 2.570 Net compression (mm) = 2.434 Height mm (H_2) = 17.45 Equivalent height of solids Hs = 12.99 Voids Ratio = ($H_2 - H_s$)/Hs = 0.343
	= 0.	075 m ² /MN	ENIO A
Tested By: MICHA	EL Date	e Reported: <u>06-08-21</u>	Checked By:

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accords	IMENSIONAL CO ince with BS 1377:19		RTIES		
BH 02 (0.0-1.85m)						
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	04-08-21	
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 02 (0.0-1.85m)	
LOADING	STAGE: No. 6	PRESSURE (kpa)	2000	MASS (kg)	40.04	





Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accord	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 02 (0.0-1.85m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	05-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 02 (0.0-1.85m)
UNLOAD	ING STAGE:	PRESSURE (kpa)	500	MASS (kg)	10.01

Tested By: MICHAEL

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES.

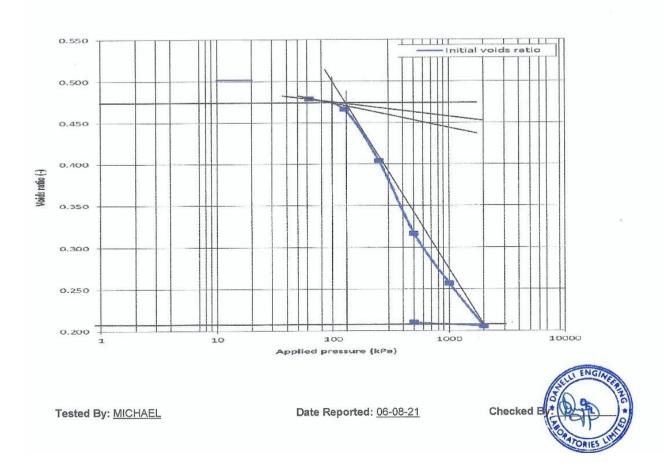
Tested in Accordance with BS 1377: 1990: Part 5: Clause 3.

BH 03 (Depth: 0.0-2.0m)

Site: <u>MWACHE W.T.P</u> Classification Group Name: <u>-</u> Ring Diameter: <u>50.0 mm</u> Area (A): <u>1963.5mm²</u> Initial voids ratio: <u>0.501</u> Pre-consolidation stress: <u>150 Kn/m²</u> Coefficient of Re-Compression Index: <u>0.0299</u> Location: <u>KWALE</u> Lab Ref: <u>TM/CCL-KORUDAM/3893</u> Height of soil particles: <u>13.32mm</u> Moisture Content after Test: <u>13.8%</u> Assumed Soil Density: <u>2600 kg/m³</u> Coe

 Depth: 0.0-2.00m

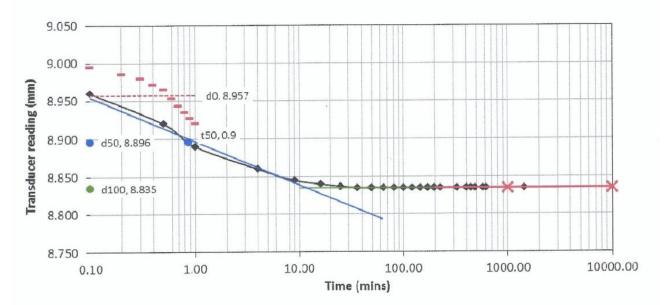
 Sample No. 3893


 Height of Ring: 20 mm

 6
 Bulk Density: 1971kg/m³

 3
 Dry Density: 1732kg/m³

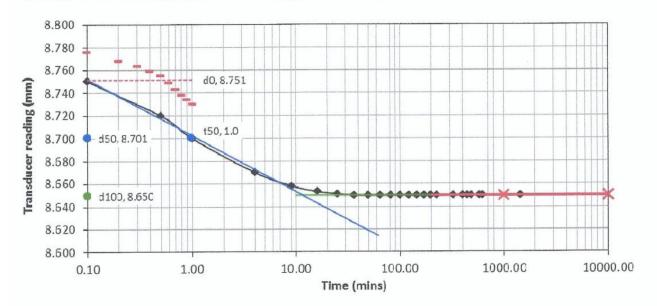
 Coefficient of Compression Index: 0.210


Voids Ratio against Applied Pressure

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ince with BS 1377:19		RTIES			
	BH 03 (0.0-2.0m)						
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	30-07-21		
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 03 (0.0-2.0m)		
LOADING	STAGE: No. 1	PRESSURE (kpa)	62.5	MASS (kg)	1.25		

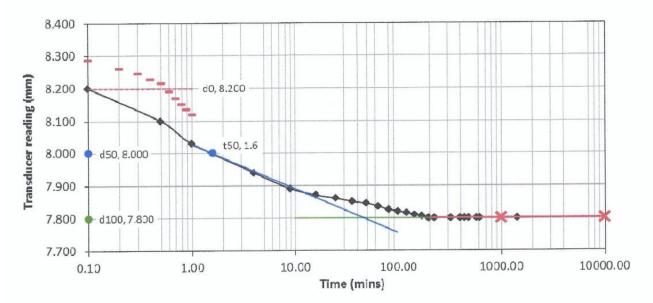
CALCULATIONS		
Change in Height = 0.335 mm From the plot, t_{50} = =0.9 mins H_1 = 20.00 mm H_2 = 19.67 mm H = (20.00+19.67)/2 = 19.84 mm Co-efficient of Consolidation, $C_v = 0.026 \text{ H}^2 = \frac{11.371 \text{ m}^2/\text{year}}{t_{50}}$ Co-efficient of Secondary Compression, $C_{\text{sec}} = \frac{\text{NII}}{\text{H}_1}$ Co-efficient of volume compressibility, $M_v = \frac{H_1 - H_2 \times 1000}{H_1} \times \frac{1000}{P_2 - P_1}$ $= 0.268 \text{ m}^2/\text{MN}$	Specimen information (cumulative) Compression (mm) = 0.335 Net compression (mm) = 0.308 Height mm (H_2) = 19.67 Equivalent height of solids Hs = 13.32 Voids Ratio = ($H_2 - H_5$)/Hs = 0.477	

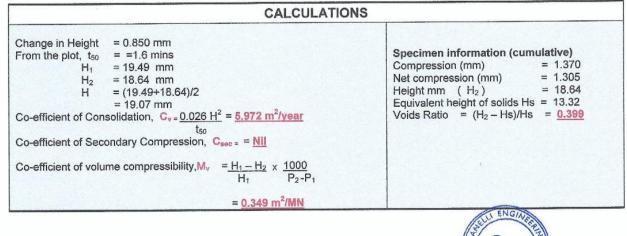

Tested By: MICHAEL

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accord	IMENSIONAL CO Ince with BS 1377:19		RTIES		
BH 03 (0.0-2.0m)						
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	31-07-21	
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 03 (0.0-2.0m)	
LOADING	STAGE: No. 2	PRESSURE (kpa)	125	MASS (kg)	2.50	

CALCULATIONS		
Change in Height = 0.185 mm From the plot, t_{50} = =1.0 mins H_1 = 19.67 mm H_2 = 19.49 mm H = (19.49+19.67)/2 = 19.58 mm Co-efficient of Consolidation, $C_{v} = 0.026 \text{ H}^2 = 9.968 \text{ m}^2/\text{vear}$ t_{50} Co-efficient of Secondary Compression, $C_{sec} = = \text{NII}$ Co-efficient of volume compressibility, $M_v = \frac{H_1 - H_2}{H_1} \times \frac{1000}{P_2 - P_1}$ = 0.150 m ² /MN	Specimen information (cumulative) Compression (mm) = 0.520 Net compression (mm) = 0.475 Height mm (H ₂) = 19.49 Equivalent height of solids Hs = 13.32 Voids Ratio = (H ₂ - Hs)/Hs = 0.463	

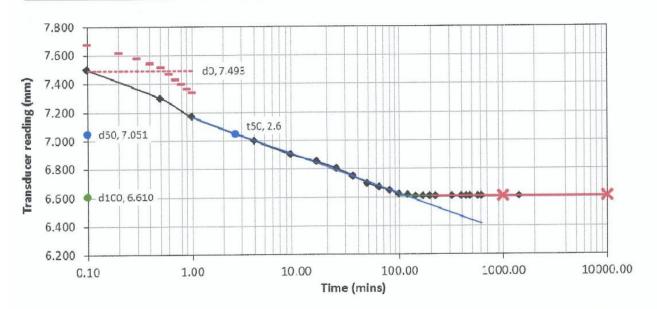

Tested By: MICHAEL



Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO Ince with BS 1377:19		RTIES	
		BH 03 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	01-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 03 (0.0-2.0m)
LOADING	G STAGE: No. 3	PRESSURE (kpa)	250	MASS (kg)	5.00

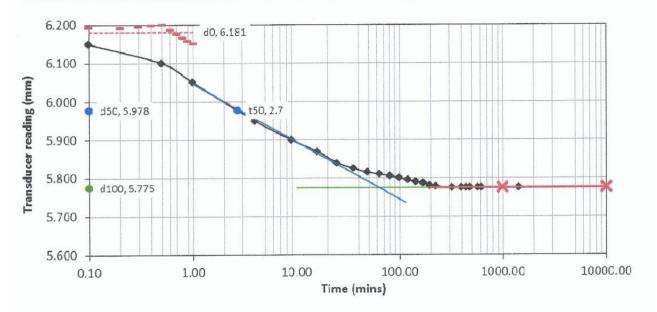
Tested By: MICHAEL



Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

DETERMINATION OF	ONE-DIMENSIONAL CONSOLIDATION PROPERTIES
Tested in	Accordance with BS 1377:1990:Part 5: Clause 3

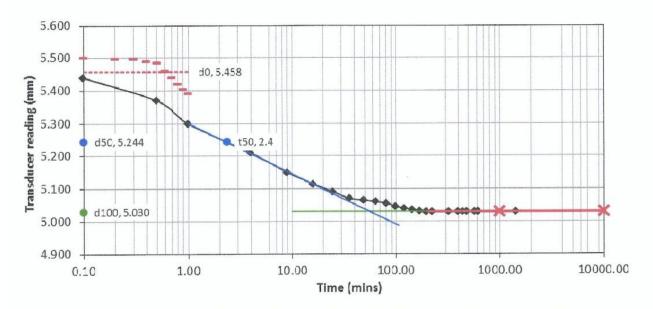
		BH 03 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	02-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 03 (0.0-2.0m)
LOADING STAGE: No. 4		PRESSURE (kpa)	500	MASS (kg)	10.01


	CALCULATIONS	
Change in Height = 1.190 mn From the plot, t_{50} = =2.6 min H ₁ = 18.64 mr H ₂ = 17.45 mr H = (17.45+11 = 18.05 mr Co-efficient of Consolidation, C Co-efficient of Secondary Comp Co-efficient of volume compress	s n n 3.64)/2 n $v_{r} = 0.026 \text{ H}^{2} = 3.258 \text{ m}^{2}/\text{year}$ t_{50} ression, $C_{sec} = = \text{Nil}$	Specimen information (cumulative) Compression (mm) = 2.560 Net compression (mm) = 2.466 Height mm (H_2) = 17.45 Equivalent height of solids Hs = 13.32 Voids Ratio = ($H_2 - H_3$)/Hs = 0.310
	= <u>0.255 m²/MN</u>	HULL ENGINE
Tested By: <u>MICHAEL</u>	Date Reported: 06-08-21	Checked By:

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES Tested in Accordance with BS 1377:1990:Part 5: Clause 3

		BH 03 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	03-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 03 (0.0-2.0m)
	STAGE: No. 5	PRESSURE (kpa)	1000	MASS (kg)	20.02

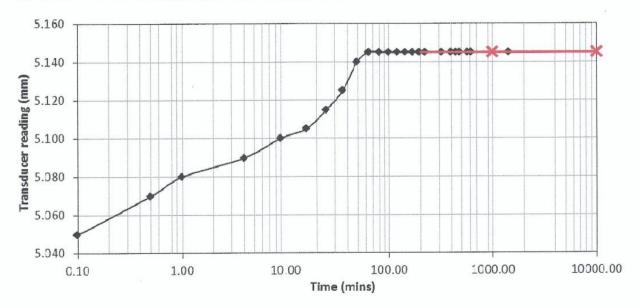


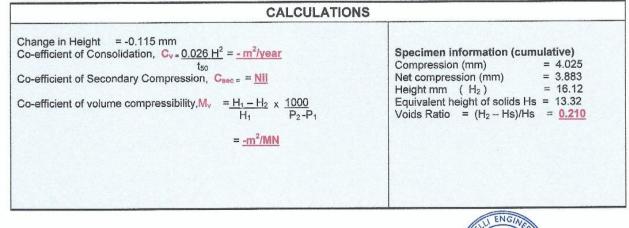
	CALCULATIONS	
Change in Height = 0.835 mm From the plot, t_{50} = =2.7 mins H_1 = 17.45 mm H_2 = 16.62 mm H = (17.45+16. = 17.04 mm Co-efficient of Consolidation, C _v Co-efficient of Secondary Compre- Co-efficient of volume compressil	62)/2 = <u>0.026 H²</u> = <u>2.796 m²/year</u> t ₅₀ ession, C _{sec} = = <u>Nil</u>	Specimen information (cumulative) Compression (mm) = 3.395 Net compression (mm) = 3.259 Height mm (H ₂) = 16.62 Equivalent height of solids Hs = 13.32 Voids Ratio = (H ₂ - Hs)/Hs = 0.248
Tested By: <u>MICHAEL</u>	= <u>0.096 m²/MN</u> Date Reported: <u>06-08-21</u>	Checked By

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 03 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	04-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 03 (0.0-2.0m)
LOADING	STAGE: No. 6	PRESSURE (kpa)	2000	MASS (kg)	40.04

CALCULATIO	N5
Change in Height = 0.745 mm From the plot, t_{50} = =2.4 mins H_1 = 16.62 mm H_2 = 15.88 mm H = (15.88+16.62)/2 = 16.25 mm Co-efficient of Consolidation, $C_v = 0.026 H^2$ = 2.861 m ² /vear t_{50} Co-efficient of Secondary Compression, $C_{sec} = = Nil$ Co-efficient of volume compressibility, $M_v = \frac{H_1 - H_2}{H_1} \times \frac{1000}{P_2 - P_1}$ = 0.045 m ² /MN	Specimen information (cumulative) Compression (mm) = 4.140 Net compression (mm) = 3.950 Height mm (H_2) = 15.88 Equivalent height of solids Hs = 13.32 Voids Ratio = ($H_2 - H_s$)/Hs = 0.192


Tested By: MICHAEL


Checked B ORIE

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accord	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 03 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3884	Date:	05-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 03 (0.0-2.0m)
UNLOAD	ING STAGE:	PRESSURE (kpa)	500	MASS (kg)	10.01

Tested By: MICHAEL

Email: danellilab3@gmail.com

info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES.

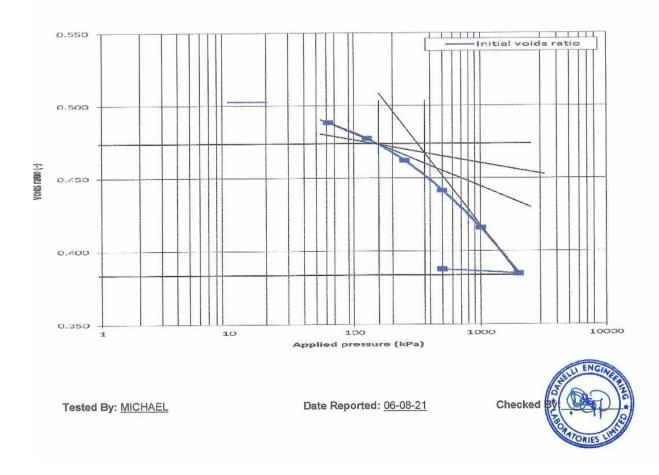
Tested in Accordance with BS 1377: 1990: Part 5: Clause 3.

BH 04 (Depth: 0.0-2.0m)

Site: <u>MWACHE W.T.P</u> Classification Group Name: _ Ring Diameter: <u>50.0 mm</u> Area (A): <u>1963.5mm²</u> Initial voids ratio: <u>0.498</u> Pre-consolidation stress: <u>370 Kn/m²</u> Coefficient of Re-Compression Index: <u>0.0299</u> Location: <u>KWALE</u> Lab Ref: <u>TM/CCL-KORUDAM/3898</u> Height of soll particles: <u>13.31mm</u> Moisture Content after Test: <u>13.8%</u> Assumed Soil Density: <u>2600 kg/m³</u> Co

 Depth: 0.0-2.00m

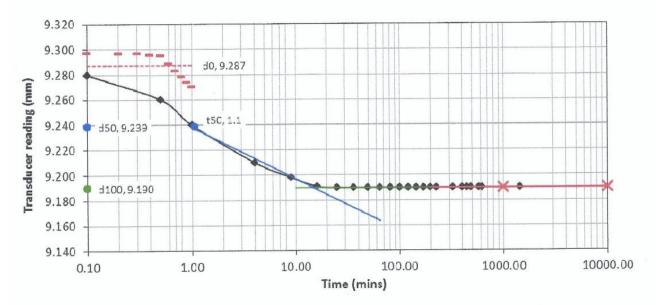
 Sample No. 3898

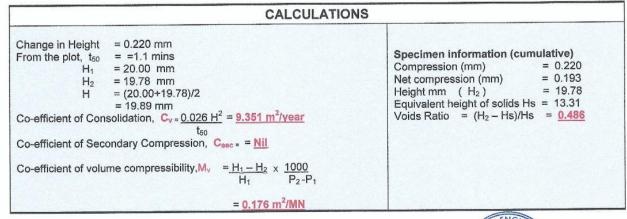

 Height of Ring: 20 mm

 6
 Bulk Density: 1963kg/m³

 3
 Dry Density: 1736kg/m³

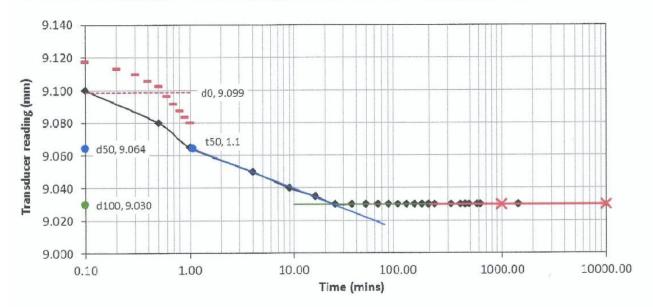
 Coefficient of Compression Index: 0.128


Voids Ratio against Applied Pressure



Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

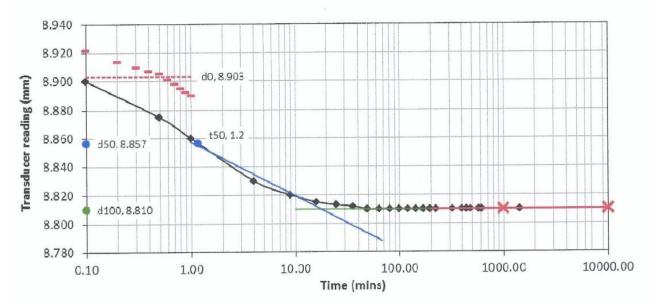
	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO Ince with BS 1377:19		RTIES	
		BH 04 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3898	Date:	30-07-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 04 (0.0-2.0m)
LOADING	G STAGE: No. 1	PRESSURE (kpa)	62.5	MASS (kg)	1.25

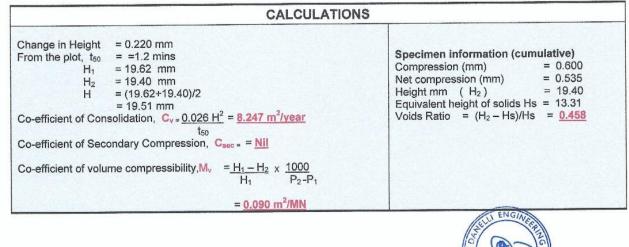

Tested By: MICHAEL

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accord	IMENSIONAL CO ance with BS 1377:19		RTIES			
	BH 04 (0.0-2.0m)						
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3898	Date:	31-07-21		
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 04 (0.0-2.0m)		
LOADING	G STAGE: No. 2	PRESSURE (kpa)	125	MASS (kg)	2.50		

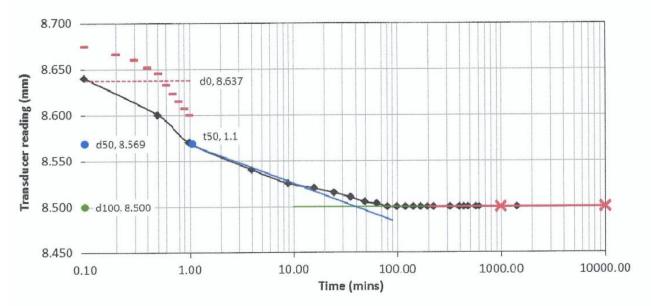
CALCULATIONS				
Change in Height = 0.160 mm From the plot, t_{50} = =1.1 mins H_1 = 19.78 mm H_2 = 19.62 mm H = (19.62+19.78)/2 = 19.70 mm Co-efficient of Consolidation, $C_v = 0.026 \text{ H}^2$ = <u>9.173 m²/year</u> t_{50} Co-efficient of Secondary Compression, $C_{sec} = = \underline{Nil}$ Co-efficient of volume compressibility, $M_v = \underline{H_1 - H_2} \times \frac{1000}{P_2 - P_1}$ = 0.129 m ² /MN	Specimen information (cumulative) Compression (mm) = 0.380 Net compression (mm) = 0.335 Height mm (H_2) = 19.62 Equivalent height of solids Hs = 13.31 Voids Ratio = ($H_2 - H_5$)/Hs = 0.474			


Tested By: MICHAEL



Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

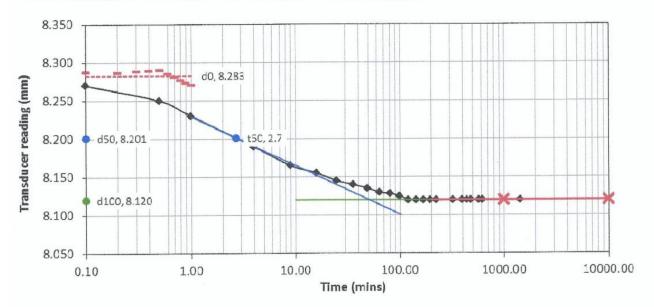
	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ince with BS 1377:19		RTIES	
		BH 04 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3898	Date:	01-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 04 (0.0-2.0m)
LOADING	G STAGE: No. 3	PRESSURE (kpa)	250	MASS (kg)	5.00

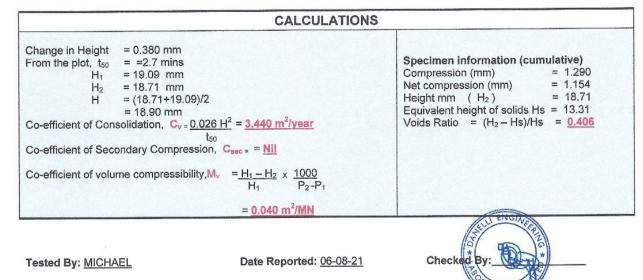

Tested By: MICHAEL

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ance with BS 1377:19		RTIES			
2070 MILLING WILLING	BH 04 (0.0-2.0m)						
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3898	Date:	02-08-21		
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 04 (0.0-2.0m)		
LOADING	G STAGE: No. 4	PRESSURE (kpa)	500	MASS (kg)	10.01		

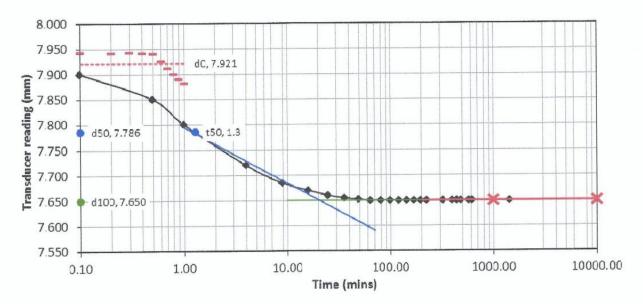
CALCULATIONS		
Change in Height = 0.310 mm From the plot, t_{50} = =1.1 mins H_1 = 19.40 mm H_2 = 19.09 mm H = (19.40+19.09)/2 = 19.25 mm Co-efficient of Consolidation, $C_{y} = 0.026 H^2$ = 8.759 m ² /year t_{50} Co-efficient of Secondary Compression, $C_{sec} = = Nil$ Co-efficient of volume compressibility, $M_y = \frac{H_1 - H_2}{H_1} \times \frac{1000}{P_2 - P_1}$ = 0.064 m ² /MN	Specimen information (cumulative) Compression (mm) = 0.910 Net compression (mm) = 0.816 Height mm (H_2) = 19.09 Equivalent height of solids Hs = 13.31 Voids Ratio = (H_2 – Hs)/Hs = 0.434	


Tested By: MICHAEL



Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accords	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 04 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3898	Date:	03-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 04 (0.0-2.0m)
LOADING	G STAGE: No. 5	PRESSURE (kpa)	1000	MASS (kg)	20.02

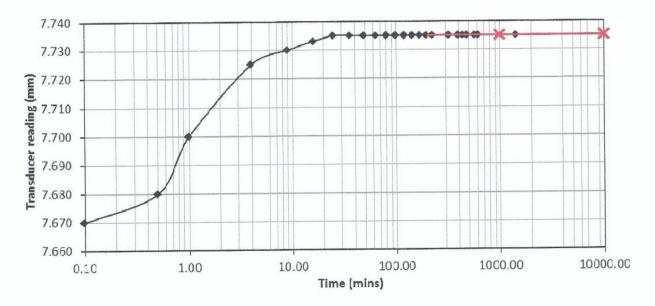


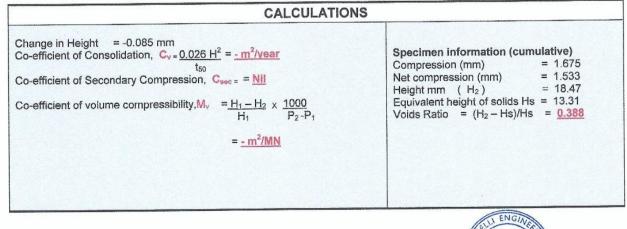
ORIE

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO Ince with BS 1377:19		RTIES	
(All Association		BH 04 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3898	Date:	04-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 04 (0.0-2.0m)
LOADING	G STAGE: No. 6	PRESSURE (kpa)	2000	MASS (kg)	40.04

CALCULATI	DNS
Change in Height = 0.470 mm From the plot, t_{50} = =1.3 mins H_1 = 18.71 mm H_2 = 18.24 mm H = (18.71+18.24)/2 = 18.48 mm Co-efficient of Consolidation, $C_{v} = 0.026 H^2$ = 6.830 m ² /year t_{50} Co-efficient of Secondary Compression, $C_{sec} = = Nil$ Co-efficient of volume compressibility, $M_v = \frac{H_1 - H_2}{H_1} \times \frac{1000}{P_2 - P_1}$ = 0.025 m ² /MN	Specimen information (cumulative) Compression (mm) = 1.760 Net compression (mm) = 1.570 Height mm (H_2) = 18.24 Equivalent height of solids Hs = 13.31 Voids Ratio = (H_2 – Hs)/Hs = 0.370


Tested By: MICHAEL



Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 04 (0.0-2.0m)			_
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3898	Date:	04-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 04 (0.0-2.0m)
UNLOAD	NING STAGE:	PRESSURE (kpa)	500	MASS (kg)	10.01

Tested By: MICHAEL

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES.

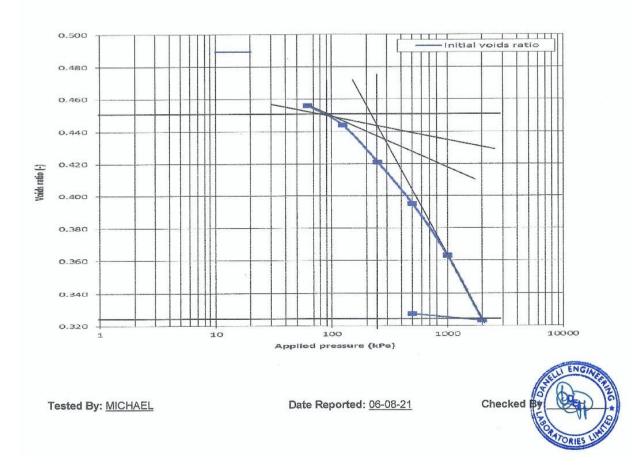
Tested in Accordance with BS 1377: 1990: Part 5: Clause 3.

BH 05 (Depth: 0.0-1.5m)

Site: <u>MWACHE W.T.P</u> Classification Group Name: <u>-</u> Ring Diameter: <u>50.0 mm</u> Area (A): <u>1963.5mm²</u> Initial voids ratio: <u>0.479</u> Pre-consolidation stress: <u>260 Kn/m²</u> Coefficient of Re-Compression Index: <u>0.0282</u> Location: <u>KWALE</u> Lab Ref: <u>TM/CCL-KORUDAM/3904</u> Height of soil particles: <u>13.43mm</u> Moisture Content after Test: <u>12.6%</u> Assumed Soil Density: <u>2600 kg/m³</u> C

 Depth: 0.0-1.5m

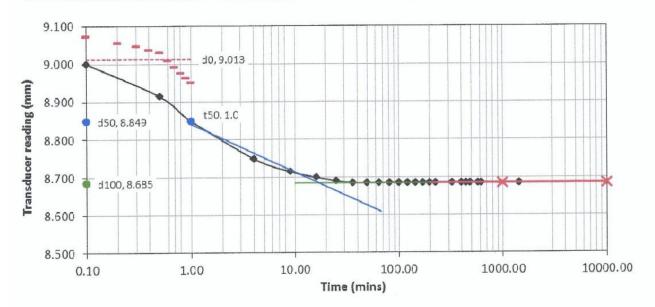
 Sample No. 3898


 Height of Ring: 20 mm

 6
 Bulk Density: 1980kg/m³

 3
 Dry Density: 1758kg/m³

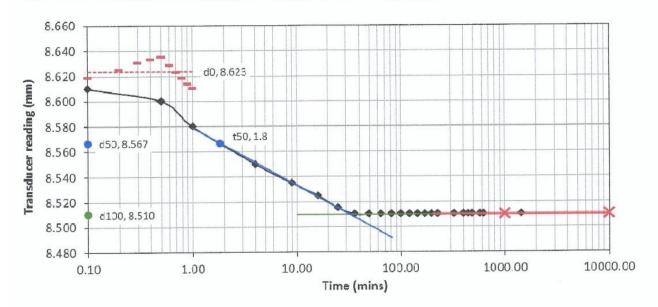
 Coefficient of Compression Index: 0.095

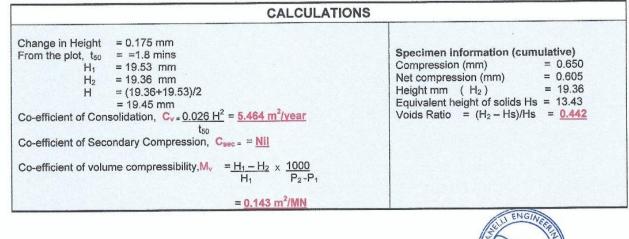

Voids Ratio against Applied Pressure

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accord	IMENSIONAL CO ince with BS 1377:19		RTIES	
		BH 05 (0.0-1.5m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3904	Date:	30-07-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 05 (0.0-1.5m)
	3 STAGE: No. 1	PRESSURE (kpa)	62.5	MASS (kg)	1.25

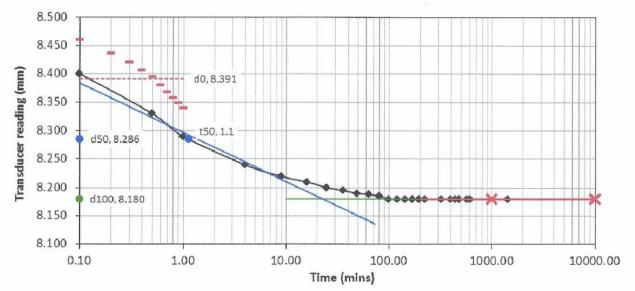
CALCULATIO	NS
Change in Height = 0.475 mm From the plot, t_{50} = =1.0 mins H_1 = 20.00 mm H_2 = 19.53 mm H = (20.00+19.53)/2 = 19.77 mm Co-efficient of Consolidation, $C_{y=} 0.026 H^2$ = 10.162 m ² /year t_{50} Co-efficient of Secondary Compression, $C_{sec=} = Nil$ Co-efficient of volume compressibility, $M_y = \frac{H_1 - H_2}{H_1} \times \frac{1000}{P_2 - P_1}$ = 0.380 m ² /MN	Specimen information (cumulative) Compression (mm) = 0.475 Net compression (mm) = 0.448 Height mm (H_2) = 19.53 Equivalent height of solids Hs = 13.43 Voids Ratio = $(H_2 - H_5)/H_5 = 0.454$


Tested By: MICHAEL



Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

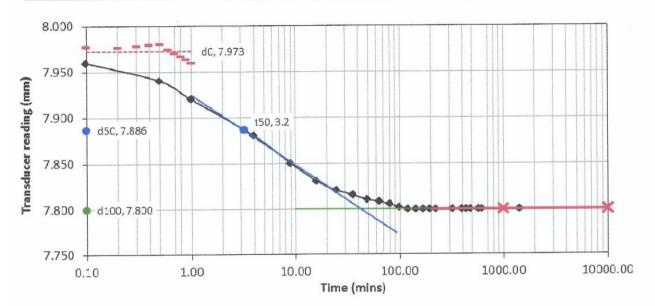
	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO Ince with BS 1377:19		RTIES	
		BH 05 (0.0-1.5m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3904	Date:	31-07-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 05 (0.0-1.5m)
LOADING	G STAGE: No. 2	PRESSURE (kpa)	125	MASS (kg)	2.50

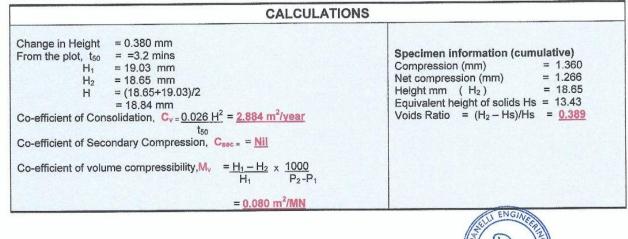

Tested By: MICHAEL

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-E Tested in Accorda	MENSIONAL CO ance with BS 1377:19		RTIES	
		BH 05 (0.0-1.5m)		an la an geographic series y ser	n Tanaya ng mangkan kana ang mana ang m
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3904	Date:	01-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 05 (0.0-1.5m)
LOADING	G STAGE: No. 3	PRESSURE (kpa)	250	MASS (kg)	5.00

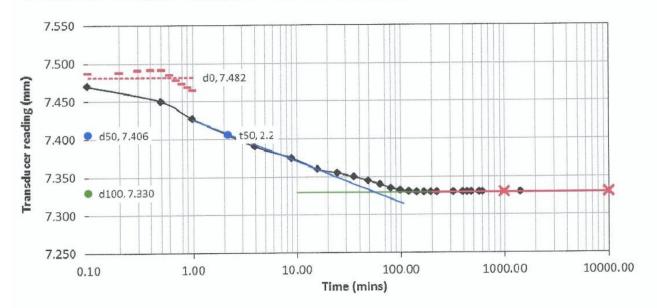
CALCULATIO	ONS
Change in Height = 0.330 mm From the plot, t_{50} = =1.1 mins H_1 = 19.36 mm H_2 = 19.03 mm H = (19.36+19.03)/2 = 19.20 mm Co-efficient of Consolidation, $C_v = 0.026 H^2 = 8.713 m^2/year$ t_{50} Co-efficient of Secondary Compression, $C_{sec} = Nil$ Co-efficient of volume compressibility, $M_v = \frac{H_1 - H_2}{H_1} \times \frac{1000}{P_2 - P_1}$ = 0.136 m ² /MN	Specimen information (cumulative) Compression (mm) = 0.980 Net compression (mm) = 0.915 Height mm (H_2) = 19.03 Equivalent height of solids Hs = 13.43 Voids Ratio = ($H_2 - H_5$)/Hs = 0.417

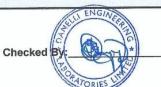

Tested By: MICHAEL


Checked B

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 05 (0.0-1.5m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3904	Date:	02-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 05 (0.0-1.5m)
LOADING	STAGE: No. 4	PRESSURE (kpa)	500	MASS (kg)	10.01

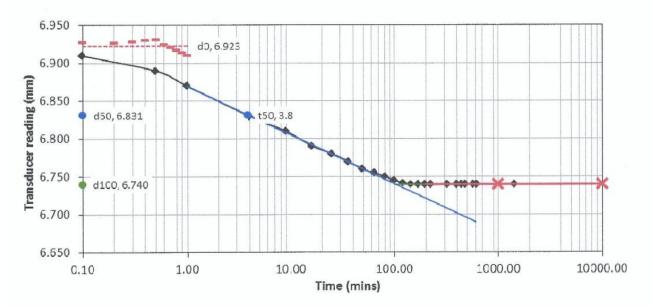

Tested By: MICHAEL


Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 05 (0.0-1.5m)		and the second state of the second state of the	
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3904	Date:	03-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 05 (0.0-1.5m)
LOADING	S STAGE: No. 5	PRESSURE (kpa)	1000	MASS (kg)	20.02

CALCULATIONS Change in Height = 0.470 mm Specimen information (cumulative) = 2.2 mins From the plot, t₅₀ Compression (mm) = 1.830 H1 = 18.65 mm = 1.694 Net compression (mm) = 18.18 mm H₂ = (18.65+18.18)/2 Height mm (H₂) = 18.18 Н Equivalent height of solids Hs = 13.43Voids Ratio = $(H_2 - H_3)/H_s = 0.354$ = 18.42 mm Co-efficient of Consolidation, Cy = 0.026 H² = 4.001 m²/year t50 Co-efficient of Secondary Compression, Csec = NII Co-efficient of volume compressibility, $M_v = H_1 - H_2 \times 1000$ P2-P1 H1 = 0.050 m²/MN ENGIA

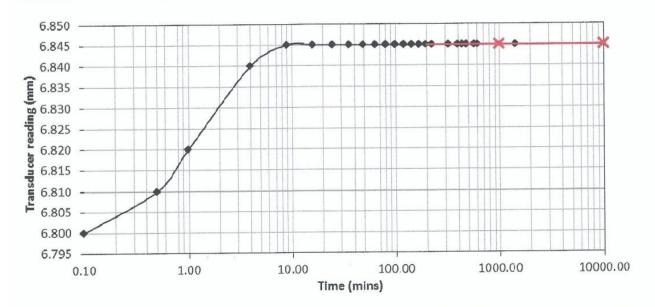
Tested By: MICHAEL

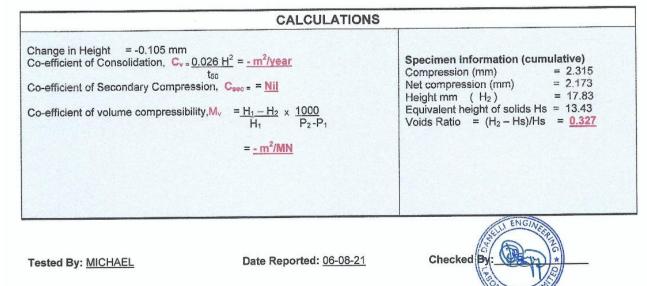


Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES Tested in Accordance with BS 1377:1990:Part 5: Clause 3

		BH 05 (0.0-1.5m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3904	Date:	04-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 05 (0.0-1.5m)
LOADING	STAGE: No. 6	PRESSURE (kpa)	2000	MASS (kg)	40.04




	CALCULATIONS	
Change in Height = 0.590 mm From the plot, t_{50} = 3.8 mins H ₁ = 18.18 mm H ₂ = 17.59 mm H = (17.59+18.18 = 17.89 mm Co-efficient of Consolidation, $C_v = G$ Co-efficient of Secondary Compress Co-efficient of volume compressibil	0.026 H ² = <mark>2.190 m²/year</mark> t ₅₀ sion, C _{sec =} = <u>Nil</u>	Specimen information (cumulative) Compression (mm) = 2.420 Net compression (mm) = 2.230 Height mm (H_2) = 17.59 Equivalent height of solids Hs = 13.43 Voids Ratio = (H_2 – H_3)/Hs = 0.310
Tested By: <u>MICHAEL</u>	= <u>0.032 m²/MN</u> Date Reported: <u>06-08-21</u>	Checked By:

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ince with BS 1377:19		RTIES	
		BH 05 (0.0-1.5m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3904	Date:	05-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 05 (0.0-1.5m)
UNLOAD	ING STAGE:	PRESSURE (kpa)	500	MASS (kg)	10.01

ORIE

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES.

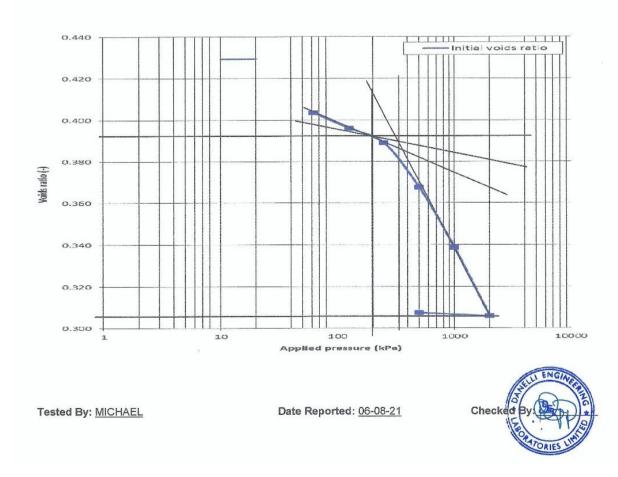
Tested in Accordance with BS 1377: 1990: Part 5: Clause 3.

BH 06 (Depth: 0.0-2.0m)

Site: <u>MWACHE W.T.P</u> Classification Group Name: <u>-</u> Ring Diameter: <u>50.0 mm</u> Area (A): <u>1963.5mm²</u> Initial voids ratio: <u>0.429</u> Pre-consolidation stress: <u>345 Kn/m²</u> Coefficient of Re-Compression Index: <u>0.0233</u> Location: <u>KWALE</u> Lab Ref: <u>TM/CCL-KORUDAM/3910</u> Height of soil particles: <u>13.99mm</u> Moisture Content after Test: <u>12.0%</u> Assumed Soil Density: <u>2600 kg/m³</u>

 Depth: 0.0-1.5m

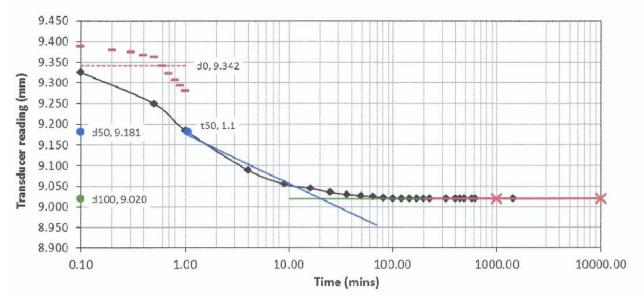
 Sample No. 3810


 Height of Ring: 20 mm

 6
 Bulk Density: 2038kg/m³

 1
 Dry Density: 1819kg/m³

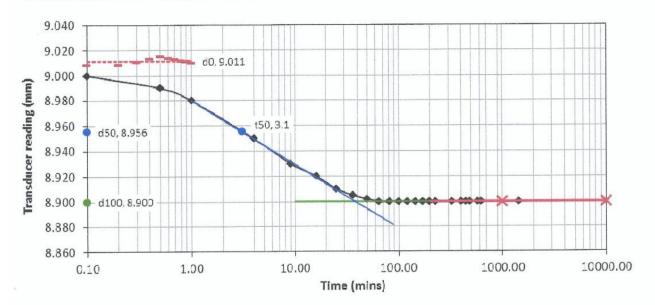
 Coefficient of Compression Index: 0.057


Voids Ratio against Applied Pressure

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accord	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 06 (0.0-2.0m)		an a	egyiptetatu serang salah
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3910	Date:	30-07-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 06 (0.0-2.0m)
LOADING	STAGE: No. 1	PRESSURE (kpa)	62.5	MASS (kg)	1.25

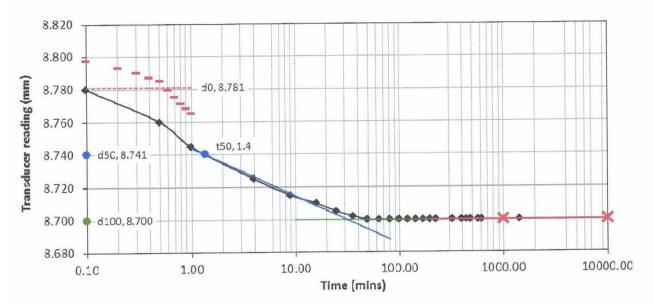
CALCULATIO	NS
Change in Height = 0.390 mm From the plot, t_{50} = =1.1 mins H_1 = 20.00 mm H_2 = 19.61 mm H = (20.00+19.61)/2 = 19.81 mm Co-efficient of Consolidation, $C_v = 0.026 \text{ H}^2$ = <u>9.276 m²/year</u> t_{50} Co-efficient of Secondary Compression, $C_{sec} = = \underline{Nil}$ Co-efficient of volume compressibility, $M_v = \underline{H_1 - H_2} \times \frac{1000}{P_2 - P_1}$ $= 0.312 \text{ m}^2/MN$	Specimen information (cumulative) Compression (mm) = 0.390 Net compression (mm) = 0.363 Height mm (H_2) = 19.61 Equivalent height of solids Hs = 13.99 Voids Ratio = ($H_2 - H_3$)/Hs = 0.402

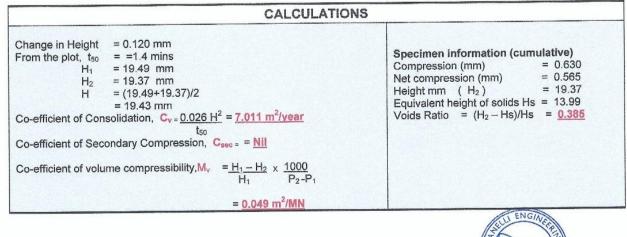

Tested By: MICHAEL

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 06 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3910	Date:	31-07-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 06 (0.0-2.0m)
	STAGE: No. 2	PRESSURE (kpa)	125	MASS (kg)	2.50

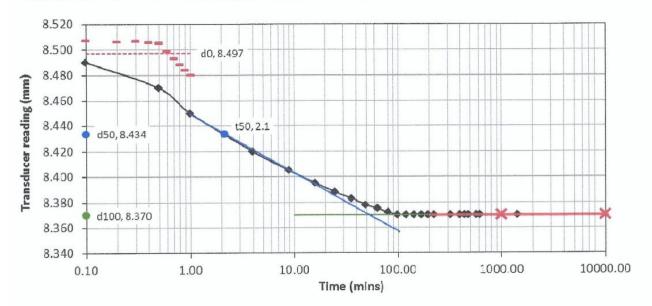
CALCULATIO	NS
Change in Height = 0.120 mm From the plot, t_{50} = =3.1 mins H_1 = 19.61 mm H_2 = 19.49 mm H = (19.49+19.61)/2 = 19.55 mm Co-efficient of Consolidation, $C_v = 0.026 H^2$ = 3.206 m ² /year t_{50} Co-efficient of Secondary Compression, $C_{sec} = = Nil$ Co-efficient of volume compressibility, $M_v = \frac{H_1 - H_2}{H_1} \times \frac{1000}{P_2 - P_1}$ = 0.098 m ² /MN	Specimen information (cumulative) Compression (mm) = 0.510 Net compression (mm) = 0.465 Height mm (H_2) = 19.49 Equivalent height of solids Hs = 13.99 Voids Ratio = (H_2 – Hs)/Hs = 0.393


Tested By: MICHAEL



Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

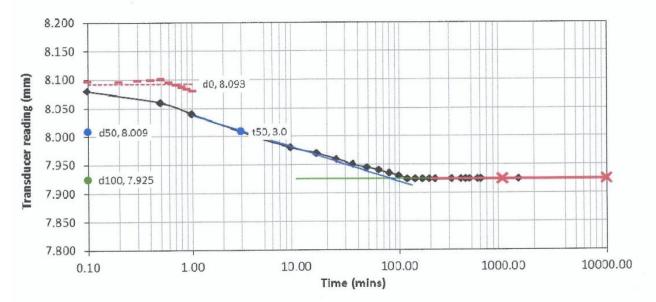
	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 06 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3910	Date:	01-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 06 (0.0-2.0m)
LOADING	S STAGE: No. 3	PRESSURE (kpa)	250	MASS (kg)	5.00

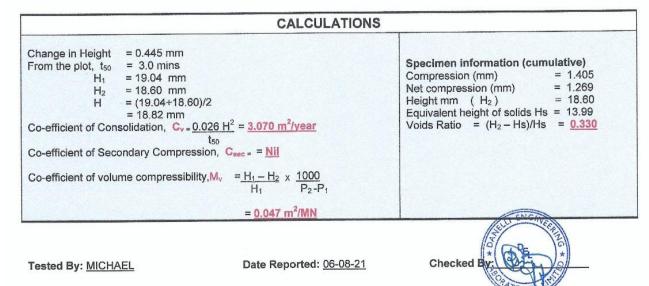

Tested By: MICHAEL

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ince with BS 1377:19		RTIES	
		BH 06 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3910	Date:	02-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 06 (0.0-2.0m)
LOADING	STAGE: No. 4	PRESSURE (kpa)	500	MASS (kg)	10.01

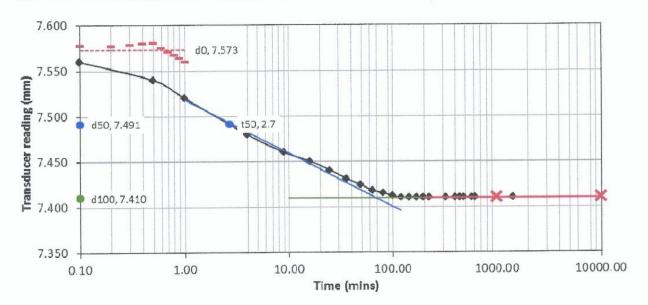
CALCULATIO	NS
Change in Height = 0.330 mm From the plot, t_{50} = 2.1 mins H_1 = 19.37 mm H_2 = 19.04 mm H = (19.04+19.37)/2 = 19.21 mm Co-efficient of Consolidation, $C_{v} = 0.026 \text{ H}^2$ = 4.569 m ² /year t_{50} Co-efficient of Secondary Compression, $C_{sec} = Nil$ Co-efficient of volume compressibility, $M_v = \frac{H_1 - H_2}{H_1} \times \frac{1000}{P_2 \cdot P_1}$ = 0.068 m ² /MN	Specimen information (cumulative) Compression (mm) = 0.960 Net compression (mm) = 0.866 Height mm (H_2) = 19.04 Equivalent height of solids Hs = 13.99 Voids Ratio = (H_2 – Hs)/Hs = 0.361

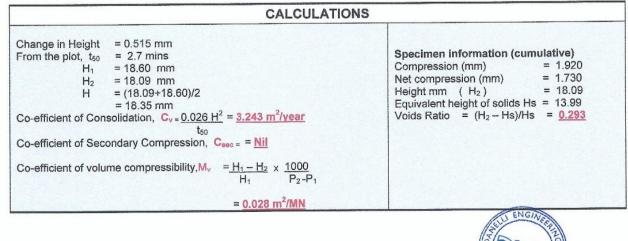

Tested By: MICHAEL



Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

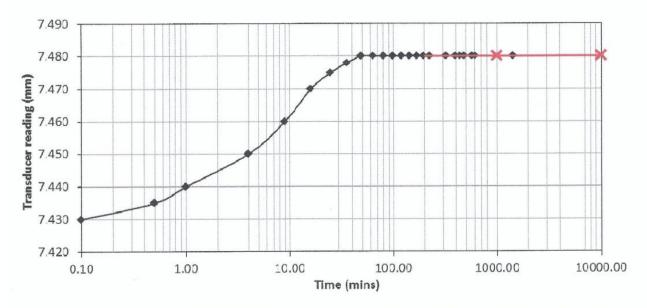
	DETERMINATION OF ONE-D Tested in Accorda	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 06 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3910	Date:	03-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 06 (0.0-2.0m)
LOADING	G STAGE: No. 5	PRESSURE (kpa)	1000	MASS (kg)	20.02





Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accord	IMENSIONAL CO ance with BS 1377:19		RTIES	4)
		BH 06 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3910	Date:	04-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 06 (0.0-2.0m)
LOADING	G STAGE: No. 6	PRESSURE (kpa)	2000	MASS (kg)	40.04


Tested By: MICHAEL

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

	DETERMINATION OF ONE-D Tested in Accord	IMENSIONAL CO ance with BS 1377:19		RTIES	
		BH 06 (0.0-2.0m)			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3910	Date:	05-08-21
Project	MWACHE WATER TRATMENT PLANT	Location:	KWALE	Sample	BH 06 (0.0-2.0m)
UNLOAD	ING STAGE:	PRESSURE (kpa)	500	MASS (kg)	10.01

Change in Height = -0.070 mm Co-efficient of Consolidation, $C_{v=0.026} H^2 = -\frac{m^2}{vear}$	
Co-efficient of Secondary Compression, $C_{sec} = Nil$ Co-efficient of volume compressibility, $M_v = \frac{H_1 - H_2}{H_1} \times \frac{1000}{P_2 - P_1}$ $= \frac{-m^2/MN}{2}$	Specimen information (cumulative) Compression (mm) = 1.850 Net compression (mm) = 1.708 Height mm (H_2) = 18.29 Equivalent height of solids Hs = 13.99 Voids Ratio = ($H_2 - H_5$)/Hs = 0.307

Tested By: MICHAEL

Appx C-87

DANELLI ENGINEERING LABORATORIES LIMITED

Rock Porosity

Tested by: KEVIN

Date Reported: 07-08-21

Checked

A DA

10 *

	DETERMIN	ATION OF F	DETERMINATION OF POROSITY OF ROCK MATERIALS Tested in accordance with ISRM /ASTM C97-83	ALS		
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3913	Date of Test:	03-08-21	
Project:	MWACHE WATER TREATMENT PLANT	Location:	KWALE COUNTY	Site:	MWACHE W.T.P	W.T.P
Material Description	ROCK CORE	Sampled By:	REGIONAL GEOPHYSICAL SURVEY	Height: (mm)	115	Diameter: (mm)
Rock Sample Reference No.	Reference No.		BH 06 (Depth: 19.0-19)-19.30m)		
Saturated sur	Saturated surface Dry Mass M _{sab} (g)		1154.0			
Dry Specimen Mass M _{ss}	Mass <i>M</i> _s , (g)		1147.0			
Specimen Bulk Volume V	k Volume V (cm³)		455.3			
Pore Volume	Pore Volume $V_v = (M_{sat} - M_s / Density of Water)$		7.0			
Porosity n =	Porosity n = V _v / V x100 (%)		1.5			

REPUBLIC OF KENYA – COAST WATER WORKS DEVELOPMENT AGENCY MWACHE WATER TREATMENT PLANT GEOTECHNICAL REPORT

Web site: www.danellilab.com Mob: +254(0) 726 721 935	Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com	DANELLI ENGINEERING LABORAETORIES LIMITED
com	ting & Inspection Centr com m	ANELLI NGINEERING NBORATORIES

	DETERMIN	Tested in accor	Tested in accordance with ISRM /ASTM C97-83	RIALS		
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3911	Date of Test:	03-08-21	
Project:	MWACHE WATER TREATMENT PLANT	Location:	KWALE COUNTY	Site:	MWACHE W.T.P	W.T.P
Material Description	ROCK CORE	Sampled By:	REGIONAL GEOPHYSICAL SURVEY	Height: (mm)	06	Diameter: (mm)
Rock Sample Reference No	ference No.		BH 06 (Depth: 6.47-6.77m	-		
Saturated surface Dry Mass Mseb	e Dry Mass <i>M_{sat},</i> (g)		884.0			
Dry Specimen Mass M _{ss}	ass M _{st} (g)		878.0			
Specimen Bulk Volume V	folume V (cm³)		356.3			
Pore Volume V_v :	Pore Volume $V_v = (M_{set} - M_s / Density of Water)$		6.0			
Porosity n = $V_v/V \times 100$ (%)	/ V x100 (%)		1.7			

Tested by: KEVIN

Date Reported: 07-08-21

Checked

¥ 9

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya	MINATION OF POROSITY OF ROCK MATERIALS	MINAT
Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi	Кепуа	
Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620	Nairobi	
Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932	Mobil Plaza 00620	
Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel	P.O.Box 64932	
Head Office & Laboratories:	Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel	
	Head Office & Laboratories:	

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

DANELLI ENGINEERING LABORATORIES LIMITED

	DETERMIN	Tested in accord	Tested in accordance with ISRM /ASTM C97-83	5		
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3909	Date of Test:	03-08-21	
Project:	MWACHE WATER TREATMENT PLANT	Location:	KWALE COUNTY	Site:	MWACHE W.T.P	W.T.P
Material Description	ROCK CORE	Sampled By:	REGIONAL GEOPHYSICAL SURVEY	Height: (mm)	171	Diameter: (mm)
Rock Sample	Rock Sample Reference No.		BH 05 (Depth: 17.16-17.36m)	36m)		
Saturated sur	Saturated surface Dry Mass M _{sab} (g)		1894.0			
Dry Specimen Mass M _s	Mass M _s , (g)		1889.0			
Specimen Bulk Volume V	k Volume V (cm ³)		677.0			
Pore Volume	Pore Volume $V_v = (M_{sat} - M_s / Density of Water)$		5.0			
Porosity n =	Porosity n = V _v / V x100 (%)		0.7			

Tested by: KEVIN

Ω
lec
ecked
ä
AT NO.
SENT *OANE
(COD)=
EPT E
13
INC * OF
1

Date Reported: 07-08-21

Tested by: KEVIN

REPUBLIC OF KENYA – COAST WATER WORKS DEVELOPMENT AGENCY
MWACHE WATER TREATMENT PLANT
GEOTECHNICAL REPORT

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 LABORATORIES

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

	DETERMIN	IATION OF P	DETERMINATION OF POROSITY OF ROCK MATERIALS Tested in accordance with ISRM /ASTM C97-83	LS			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3905	Date of Test:	03-08-21		
Project:	MWACHE WATER TREATMENT PLANT	Location:	KWALE COUNTY	Site:	MWACHE W.T.P	W.T.P	
Material Description	ROCK CORE	Sampled By:	REGIONAL GEOPHYSICAL SURVEY	Height: (mm)	174	Diameter: (mm)	71
Rock Sample Reference No.	Reference No.		BH 05 (Depth: 5.32-5.65m	n)			
Saturated surf	Saturated surface Dry Mass M _{sat} (g)		1722.0				
Dry Specimen Mass M _{sp}	Mass M _s , (g)		1712.0				
Specimen Bulk Volume V	k Volume V (cm ³)		688.9				
Pore Volume	Pore Volume $V_v = (M_{sat} - M_s / Density of Water)$		10.0				
Porosity n =	Porosity n = V _v /V x100 (%)		<u>1</u> .о				

Che
necked
DENT & DAANEL

Tested by: KEVIN

Porosity n = V _v / V x100 (%)	Pore Volume V	Specimen Bulk Volume V	Dry Specimen Mass M _s	Saturated surfa	ROCK Sample Reference No.		Material Description	Project:	Client	
/ _v / V x100 (%)	Pore Volume $V_v = (M_{sat} - M_s / Density of Water)$	Volume V (cm ³)	Mass M _{st} (g)	Saturated surface Dry Mass M _{sab} (g)	elefence no.		ROCK CORE	MWACHE WATER TREATMENT PLANT	REGIONAL GEOPHYSICAL SURVEY	DETERMIN
							Sampled By:	Location:	Job Reference:	ATION OF F
2.0	11.0	554.3	1425.0	1436.0	Bri 04 (Deput: 19.20-19.740)	DU AI DAMA A DA	REGIONAL GEOPHYSICAL SURVEY	KWALE COUNTY	TM/RGS-MWACHE/3903	Tested in accordance with ISRM /ASTM C97-83
					12.7400	40 74-01	Height: (mm)	Site:	Date of Test:	lials
							177	MWACHE W.T.P	03-08-21	
							Diameter: (mm)	W.T.P		
							71			

REPUBLIC OF KENYA – COAST WATER WORKS DEVELOPMENT AGENCY MWACHE WATER TREATMENT PLANT GEOTECHNICAL REPORT

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

LABORATORIES

Mobil Plaza 00620 Nairobi

Kenya

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932

Mob: +254(0) 726 721 935	info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935						i keniya
	DETERMIN	IATION OF I	DETERMINATION OF POROSITY OF ROCK MATERIALS Tested in accordance with ISRM /ASTM C97-83	IIALS			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3899	Date of Test:	03-08-21		
Project:	MWACHE WATER TREATMENT PLANT	Location:	KWALE COUNTY	Site:	MWACHE W.T.P	W.T.P	
Material Description	ROCK CORE	Sampled By:	REGIONAL GEOPHYSICAL SURVEY	Height: (mm)	149	Diameter: (mm)	71
Rock Sample	Rock Sample Reference No.		BH 04 (Depth: 6.0-6.6	3.60m)			
Saturated sur	Saturated surface Dry Mass <i>M_{sati}</i> (g)		1470.0				
Dry Specimen Mass M _s	n Mass <i>M_{ss}</i> (g)		1462.0				
Specimen Bulk Volume V	lk Volume V (cm ³)		589.9				
Pore Volume	Pore Volume V _v =(<i>M</i> _{sat} - <i>M</i> _s /Density of Water)		8.0				
Porosity n =	Porosity n = V _v / V x100 (%)		1.4				
Tested by: KEVI	Z	Date Re	ported: 07-08-21	Che	cked by:	Checked by:	10 * 00
Tested by: KEVIN	Z	Date Re	Date Reported: 07-08-21	Che	cked by:		0

DANELLI ENGINEERING LABORATORIES LIMITED

ARTELIA / MIBP / SEPTEMBER 2021 / 877 3361

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

		and the second second second	Contraction of the local division of the loc						
	Porosity n = V _v / V x100 (%)	Pore Volume V	Specimen Bulk Volume V	Dry Specimen Mass M _{st}	Saturated surfa	Rock Sample Reference No.	Material Description	Project:	Client:
	/√/ V x100 (%)	Pore Volume V _v =(M _{sat} - M _s /Density of Water)	Volume V	Mass M _{st}	Saturated surface Dry Mass M _{sate}	eference No.	ROCK CORE	MWACHE WATER TREATMENT PLANT	REGIONAL GEOPHYSICAL SURVEY
		Water)	(cm ³)	(g)	(g)			IENT PLANT	SURVEY
5				-			Sampled By:	Location:	Job Reference:
	1.0	4.0	392.0	1003.0	1007.0	BH 03 (Depth: 18.30-18.60m)	REGIONAL GEOPHYSICAL SURVEY	KWALE COUNTY	TM/RGS-MWACHE/3896
2						.60m)	Height: (mm)	Sife:	Date of Test:
DANS							174	MWACHE W.T.P	03-08-21
CZ PART							Diameter: (mm)	W.T.P	
ONIN							71		

Date Reported: 07-08-21

Tested by: KEVIN

DETERMINATION OF POROSITY OF ROCK MATERIALS

Tested in accordance with ISRM /ASTM C97-83

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 DANELLI ENGINEERING LABORATORIES

> Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Head Office & Laboratories: Mobil Plaza 00620 Nairobi Kenya

Web site: www.danellilab.com	info@danellilab.com	Email: danellilab3@gmail.com	Independent Materials testing & Inspection Centre	E S P V
ion .	п	som	ing & Inspection Centre	DANELLI ENGINEERING LABORATORIES LIMITED

Mob: +254(0) 726 721 935

			Pili Trade Centre, (Head (
Kenya	Mobil Plaza 00620	P.O.Box 64932	Pili Trade Centre, Opposite Hilton Garden Inn Hotel	Mombasa Road	Head Office & Laboratories:

REPUBLIC OF KENYA – COAST WATER WORKS DEVELOPMENT AGENCY
MWACHE WATER TREATMENT PLANT
GEOTECHNICAL REPORT

Porosity n = V _v /V x100 (%)	Pore Volume V _v	Specimen Bulk Volume V Pore Volume V _v =(<i>M</i> _{sat} - <i>M</i> ;		Saturated surfa	Rock Sample Reference No.	Material Description	Project:	Client:	
√/ V x100 (%)	Pore Volume V _v =(M _{sat} - M _s /Density of Water)	Volume V (cm ³)	Dry Specimen Mass M _{ss} (g)	Saturated surface Dry Mass M _{sat} (9)	eference No.	ROCK CORE	MWACHE WATER TREATMENT PLANT	REGIONAL GEOPHYSICAL SURVEY	DETERMIN
						Sampled By:	Location:	Job Reference:	Tested in accor
1.7	12.0	700.8	1824.0	1836.0	BH 03 (Depth: 8.24-9.0	REGIONAL GEOPHYSICAL SURVEY	KWALE COUNTY	TM/RGS-MWACHE/3894	Tested in accordance with ISRM /ASTM C97-83
).00m)	Height: (mm)	Site:	Date of Test:	ALS
						177	MWACHE W.T.P	03-08-21	
						Diameter: (mm)	W.T.P		
						71			

Tested by: KEVIN

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com	
als testing & In gmail.com ilab.com ellilab.com	LABOR
nspection Centre	DANELLI ENGINEERING LABORATORIES

Mob: +254(0) 726 721 935

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

	DETERMIN	Tested in accor	Tested in accordance with ISRM /ASTM C97-83	RIALS			
Client:	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGS-MWACHE/3891	Date of Test:	03-08-21		
Project:	MWACHE WATER TREATMENT PLANT	Location:	KWALE COUNTY	Site:	MWACHE W.T.P	W.T.P	
Material Description	ROCK CORE	Sampled By:	REGIONAL GEOPHYSICAL SURVEY	Height: (mm)	137	Diameter: (mm)	82
Rock Sample Reference No.	Reference No.		BH 02 (Depth: 12.15-1	-12.65m)			
Saturated surf	Saturated surface Dry Mass M _{sat} (g)		1890.0				
Dry Specimen Mass M _{s7}	Mass M _{ss} (g)		1882.0				
Specimen Bulk Volume V	(Volume V (cm ³)		723.5				
Pore Volume V	Pore Volume $V_v = (M_{sat} - M_s / Density of Water)$		8.0				
Porosity n =	Porosity n = V _v /V x100 (%)		1.1				

Tested by: KEVIN

Date Reported: 07-08-21

Checked by

NC

Web site: www.danellilab.com	info@danellilab.com	Email: danellilab3@gmail.com	Independent Materials testing & Inspection Centre	DANELLI ENGINEERING LABORATORIES	
			ntre	(A	

Mob: +254(0) 726 721 935

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

	DETERMIN	ATION OF P Tested in accord	DETERMINATION OF POROSITY OF ROCK MATERIALS Tested in accordance with ISRM (ASTM C97-83	STN			
Client	REGIONAL GEOPHYSICAL SURVEY	Job Reference:	TM/RGSMWACHE/3889	Date of Test:	03-08-21		
Project:	MWACHE WATER TREATMENT PLANT	Location:	KWALE COUNTY	Site:	MWACHE W.T.P	W.T.P	
Material Description	ROCK CORE	Sampled By:	REGIONAL GEOPHYSICAL SURVEY	Height: (mm)	166	Diameter: (mm)	82
Rock Sample	Rock Sample Reference No.		BH 02 (Depth: 8.0-8.40m	-			
Saturated sur	Saturated surface Dry Mass M _{sab} (g)		2233.0				
Dry Specimen Mass M _s	ı Mass <i>M</i> s, (g)		2221.0				
Specimen Bulk Volume V	lk Volume V (cm³)		876.6				
Pore Volume	Pore Volume $V_v = (M_{sat} - M_s / Density of Water)$		12.0				
Porosity n =	Porosity n = V _v /V x100 (%)		1.4				

Tested by: KEVIN

DANELLI ENGINEERING LABORATORIES

REPUBLIC OF KENYA – COAST WATER WORKS DEVELOPMENT AGENCY MWACHE WATER TREATMENT PLANT GEOTECHNICAL REPORT

DETERMINATION OF I Tested in acco REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT Job Reference: MWACHE WATER TREATMENT PLANT Location: ROCK CORE Sampled By:	ERMINATION OF POROSITY OF ROCK MATERIA Tested in accordance with ISRM /ASTM C97-83 TM/RGS_MW/ACHE/3887 TM/RGS_MW/ACHE/3887 TM/RGS_MW/ACHE/3887 TPLANT Location: KWALE COUNTY Sampled By: REGIONAL GEOPHYSICAL SURVEY BH 01 (Depth: 18.0-18.7)	VATION OF POROSITY O Tested in accordance with ISRM Job Reference: Job Reference: TM/RGS-MWACH Location: KWALE COUNTY Sampled By:	VATION OF POROSITY OF ROCK MATERIALS Tested in accordance with ISRM /ASTM C97-83 Job Reference: Job Reference: TM/RGS-MWACHE/3887 Location: KWALE COUNTY Sampled By: REGIONAL GEOPHYSICAL SURVEY BH 01 (Depth: 18.0-18.70m)
ATION OF I Tested in acco Job Reference: Location: Sampled By:	ATION OF POROSITY OF ROCK MATERI/ Tested in accordance with ISRM /ASTM C97-83 Job Reference: TM/RGS-MWACHE/3887 Location: KWALE COUNTY Sampled By: REGIONAL GEOPHYSICAL SURVEY BH 01 (Depth: 18.0-18.) 1212.0	ATION OF POROSITY OF ROCK MATERIALS Tested in accordance with ISRM /ASTM C97-83 Job Reference: TM/RGS-MWACHE/3887 Date of Test: Job Reference: TM/RGS-MWACHE/3887 Sate of Test: Location: KWALE COUNTY Site: Sampled By: REGIONAL GEOPHYSICAL SURVEY Height:: BH 01 (Depth: 18.0-18.70m) 1212.0	ate of Test: ite: height: mm)
	POROSITY OF ROCK MATERI/ dance with ISRM /ASTM C97-83 TM/RGS-MWACHE/3887 KWALE COUNTY REGIONAL GEOPHYSICAL SURVEY BH 01 (Depth: 18.0-18.7 1212.0 1205.0	POROSITY OF ROCK MATERIALS rdance with ISRM /ASTM C97-83 TM/RGS-MWACHE/3887 Date of Test: KWALE COUNTY SICAL SURVEY Site: REGIONAL GEOPHYSICAL SURVEY Height: 1212.0 1212.0 1205.0 463.2	ate of Test: ite: meight: mm)

Tested by: KEVIN

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com	
sting & Inspection Centre	DANELLI
com	ENGINEERING
Dm	LABORATORIES

Mob: +254(0) 726 721 935

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

Porosity $n = V / V \times 100$ (%)	Pore Volume V _v =(M _{set} - M _s /Density of Water)	Specimen Bulk Volume V	Dry Specimen Mass <i>M</i> _s ,	Saturated surface Dry Mass M _{sat}	Rock Sample Reference No.	Material ROCK CORE	Project: MWACHE	
	, /Density of Water)	(cm ³)	(B)	ISS M _{sat} (g)	Vo.	RE	MWACHE WATER TREATMENT PLANT	
						Sampled By:	Location:	
	11.0	554.3	1707.0	1718.0	BH 01 (Depth: 9.0-9.75m)	REGIONAL GEOPHYSICAL SURVEY	KWALE COUNTY	
					n)	Height: (mm)	Site:	
						173	MWACHE W.T.P	
						Diamet (mm	W.T.P	

Diameter: (mm)

71

Specific Gravity and Water Absorption

info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity & Water Absorption Test BS EN 1097: Part 6:2000 BH 01(9.0-9.75M)

Site: MWACHE W.T.P	Location: KWALE	Date Received: 23-07-21
Material Description: <u>CRUSHED ROCK CORES</u>	Lab Ref: <u>AGG/RGS-MWACHE/3885</u>	Sample No: <u>3885</u>
Sampled by: REGIONAL GEOPHYSICAL SURVEY	Source: SITE	Date Tested: 04-08-21

	TEST NO.	1	2	
M1	The mass of saturated surface dry in (g)	804.0	907.3	
M2	The mass in water containing of saturated sample (g)	497.6	557.8	
M3	The mass in water of the empty basket (g)		-	
M4 The mass of oven-dried sample in (g)		800.9	902.8	
Relati [,] basis	ve Density on an oven-dried $= M_4/(M_1-[M_2-M_3])$	2.61	2.58	2.60
Relative Density on a saturated & surface- dried basis $= M_1/(M_1-[M_2-M_3])$		2.62	2.60	2.61
Apparent Relative Density = $M_4/(M_4-[M_{2^{-}} M_3])$		2.64	2.62	2.63
Water	Absorption (% of dry mass) =100(M ₁ - M ₄)/ M ₄	0.4	0.5	0.4

Checkellary:

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity & Water Absorption Test BS EN 1097: Part 6:2000 BH 01(18.0-18.70M)

Site: MWACHE W.T.P

Location: KWALE Date Received: 23-07-21 Material Description: CRUSHED ROCK CORES Lab Ref: AGG/RGS-MWACHE/3887 Sample No: 3887 Date Tested: 04-08-21 Sampled by: REGIONAL GEOPHYSICAL SURVEY Source: SITE

	TEST NO.	1	2	
M1	The mass of saturated surface dry in (g)	564.6	518.1	
M2	The mass in water containing of saturated sample (g)	346.9	316.6	
M3	The mass in water of the empty basket (g)		-	
M4	The mass of oven-dried sample in (g)	562.4	515.8	
Relati basis	ve Density on an oven-dried = M₄/(M₁-[M₂- M₃])	2.58	2.56	2.58
Relative Density on a saturated & surface- dried basis $= M_1/(M_1-[M_2-M_3])$		2.59	2.57	2.58
Apparent Relative Density = $M_4/(M_4-[M_2-M_3])$		2.61	2.59	2.60
Water	Absorption (% of dry mass) =100(M ₁ - M ₄)/ M ₄	0.4	0.4	0.4

Tested by: KEVIN

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity & Water Absorption Test BS EN 1097: Part 6:2000 BH 02(8.00-8.40M)

Site: MWACHE W.T.P

Location: KWALE

Source: SITE

Lab Ref: AGG/RGS-MWACHE/3889

Date Received: 23-07-21

Date Tested: 04-08-21

Sample No: 3889

Material Description: CRUSHED ROCK CORES

Sampled by: REGIONAL GEOPHYSICAL SURVEY

TEST NO.		1	2	
M1	The mass of saturated surface dry in (g)	548.8	525.8	
M2	The mass in water containing of saturated sample (g)	334.3	320.0	
M3	The mass in water of the empty basket (g)	-	-	
M4	The mass of oven-dried sample in (g)	547.3	524.8	
Relati basis	ve Density on an oven-dried = $M_4/(M_1-[M_2-M_3])$	2.55	2.55	2.55
Relati dried I	ve Density on a saturated & surface- basis = M ₁ /(M ₁ -[M ₂ - M ₃])	2.56	2.55	2.56
Apparent Relative Density = M ₄ /(M ₄ -[M ₂ - M ₃])		2.57	2.56	2.57
Water	Absorption (% of dry mass) =100(M ₁ - M ₄)/ M ₄	0.3	0.2	0.3

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity & Water Absorption Test BS EN 1097: Part 6:2000 BH 02(12.15-12.65M)

Site: MWACHE W.T.P

Location: KWALE

Source: SITE

Lab Ref: AGG/RGS-MWACHE/3891

Date Received: 23-07-21

Date Tested: 04-08-21

Sample No: 3891

Material Description: CRUSHED ROCK CORES

Sampled by: REGIONAL GEOPHYSICAL SURVEY

	TEST NO.	1	2	
M1	The mass of saturated surface dry in (g)	517.5	511.2	
M2	The mass in water containing of saturated sample (g)	317.2	313.7	
M3	The mass in water of the empty basket (g)	-	-	
M4	The mass of oven-dried sample in (g)	514.5	508.5	
Relati basis	ve Density on an oven-dried = $M_4/(M_1-[M_2-M_3])$	2.57	2.57	2.57
Relati dried l	ve Density on a saturated & surface- basis = M ₁ /(M ₁ -[M ₂ - M ₃])	2.58	2.59	2.59
Apparent Relative Density = M ₄ /(M ₄ -[M ₂ - M ₃])		2.61	2.61	2.61
Water	Absorption (% of dry mass) =100(M ₁ - M ₄)/ M ₄	0.6	0.5	0.6

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity & Water Absorption Test BS EN 1097: Part 6:2000 BH 03(8.24-9.00M)

Site: MWACHE W.T.P	Location: KWALE	Date Received: 23-07-21
Material Description: <u>CRUSHED ROCK CORES</u>	Lab Ref: <u>AGG/RGS-MWACHE/3894</u>	Sample No: 3894
Sampled by: REGIONAL GEOPHYSICAL SURVEY	Source: SITE	Date Tested: 04-08-21

	TEST NO.	1	2	
M1	The mass of saturated surface dry in (g)	566.5	537.1	
M2	The mass in water containing of saturated sample (g)	348.5	329.7	
M3	The mass in water of the empty basket (g)	-	-	
M4	The mass of oven-dried sample in (g)	565.6	536.0	
Relati basis	ve Density on an oven-dried = $M_4/(M_1-[M_2-M_3])$	2.59	2.58	2.59
Relation dried I	ve Density on a saturated & surface- basis = M ₁ /(M ₁ -[M ₂ - M ₃])	2.60	2.59	2.60
Apparent Relative Density = M ₄ /(M ₄ -[M ₂ - M ₃])		2.61	2.60	2.61
Water	Absorption (% of dry mass) =100(M ₁ - M ₄)/ M ₄	0.2	0.2	0.2

Tested by: KEVIN

Date Reported: 07-08-21

Checked by

Independent Materials testing & Inspection Centre

Email: danellilab3@gmail.com

info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity & Water Absorption Test BS EN 1097: Part 6:2000 BH 03(18.30-18.60M)

Site: MWACHE W.T.P

Location: KWALE

Source: SITE

Lab Ref: AGG/RGS-MWACHE/3896

Date Received: 23-07-21

Date Tested: 04-08-21

Sample No: 3896

Material Description: CRUSHED ROCK CORES

Sampled by: REGIONAL GEOPHYSICAL SURVEY

	TEST NO.	1	2	
M1	The mass of saturated surface dry in (g)	587.9	574.5	
M2	The mass in water containing of saturated sample (g)	361.0	351.6	
M3	The mass in water of the empty basket (g)	-	-	
M4	The mass of oven-dried sample in (g)	585.5	572.9	
Relati basis	ve Density on an oven-dried = $M_4/(M_1-[M_2-M_3])$	2.58	2.57	2.58
Relati dried	ve Density on a saturated & surface- basis = M ₁ /(M ₁ -[M ₂ - M ₃])	2.59	2.58	2.59
Appar	rent Relative Density = $M_4/(M_4-[M_2-M_3])$	2.61	2.59	2.60
Water	Absorption (% of dry mass) =100(M ₁ - M ₄)/ M ₄	0.4	0.3	0.4

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O.Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity & Water Absorption Test BS EN 1097: Part 6:2000 BH 04(6.0-6.60M)

Site: MWACHE W.T.P

Location: KWALE

Source: SITE

Lab Ref: AGG/RGS-MWACHE/3899

Date Received: 23-07-21

Date Tested: 04-08-21

Sample No: 3899

Material Description: CRUSHED ROCK CORES

Sampled by: REGIONAL GEOPHYSICAL SURVEY

	TEST NO.	1	2	
M1	The mass of saturated surface dry in (g)	535.6	534.3	
M2	The mass in water containing of saturated sample (g)	327.2	325.5	
M3	The mass in water of the empty basket (g)	-		
M4	The mass of oven-dried sample in (g)	531.0	530.6	
Relati basis	ve Density on an oven-dried = M4/(M1-[M2- M3])	2.55	2.54	2.55
Relati dried I	ve Density on a saturated & surface- basis = M ₁ /(M ₁ -[M ₂ - M ₃])	2.57	2.56	2.57
Appar	rent Relative Density = M4/(M4-[M2- M3])	2.61	2.59	2.60
Water	Absorption (% of dry mass) =100(M ₁ - M ₄)/ M ₄	0.9	0.7	0.8

Tested by: KEVIN

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site; www.danellilab.com Mob: +254(0) 726 721 935

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity & Water Absorption Test BS EN 1097: Part 6:2000 BH 04(19.23-19.74M)

Site: MWACHE W.T.P

Location: KWALE

Lab Ref: AGG/RGS-MWACHE/3903

Date Received: 23-07-21

Sample No: 3903

Material Description: CRUSHED ROCK CORES

Sampled by: REGIONAL GEOPHYSICAL SURVEY Source: SITE

Date Tested: 04-08-21

	TEST NO.	1	2	
M1	The mass of saturated surface dry in (g)	615.1	559.2	
M2	The mass in water containing of saturated sample (g)	379.4	344.3	
МЗ	The mass in water of the empty basket (9)	-	-	
M4	The mass of oven-dried sample in (g)	611.6	555.1	
Relati basis	ve Density on an oven-dried = $M_4/(M_1-[M_2-M_3])$	2.59	2.58	2.59
Relati dried I	ve Density on a saturated & surface- basis = M ₁ /(M ₁ -[M ₂ - M ₃])	2.61	2.60	2.61
Appar	rent Relative Density = M₄/(M₄-[M₂- M₃])	2.63	2.63	2.63
Water	Absorption (% of dry mass) =100(M ₁ - M ₄)/ M ₄	0.6	0.7	0.7

Tested by: KEVIN

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity & Water Absorption Test BS EN 1097: Part 6:2000 BH 05(5.32-5.65M)

 Site: MWACHE W.T.P
 Location: KWALE
 Date Received: 23-07-21

 Material Description: CRUSHED ROCK CORES
 Lab Ref: AGG/RGS-MWACHE/3905
 Sample No: 3905

 Sampled by: REGIONAL GEOPHYSICAL SURVEY
 Source: SITE
 Date Tested: 04-08-21

	TEST NO.	1	2	
M1	The mass of saturated surface dry in (g)	539.4	512.0	
M2	The mass in water containing of saturated sample (g)	330.2	311.7	
M3	The mass in water of the empty basket (g)	-	-	
M4	The mass of oven-dried sample in (g)	535.6	507.8	
Relativ basis	ve Density on an oven-dried = $M_4/(M_1-[M_2-M_3])$	2.56	2.54	2.55
Relati dried I	ve Density on a saturated & surface- basis = M ₁ /(M ₁ -[M ₂ - M ₃])	2.58	2.56	2.57
Appar	rent Relative Density = $M_4/(M_4-[M_2-M_3])$	2.61	2.59	2.60
Water	Absorption (% of dry mass) =100(M ₁ - M ₄)/ M ₄	0.7	0.8	0.8

Tested by: KEVIN

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity & Water Absorption Test BS EN 1097: Part 6:2000 BH 05(17.16-17.36M)

 Site: MWACHE W.T.P
 Location: KWALE
 Date Received: 23-07-21

 Material Description: CRUSHED ROCK CORES
 Lab Ref: AGG/RGS-MWACHE/3909
 Sample No: 3909

 Sampled by: REGIONAL GEOPHYSICAL SURVEY
 Source: SITE
 Date Tested: 04-08-21

	TEST NO.	1	2	
M1	The mass of saturated surface dry in (g)	654.2	459.1	
M2	The mass in water containing of saturated sample (g)	402.6	281.5	
M3	The mass in water of the empty basket (g)	-	-	
M4	The mass of oven-dried sample in (g)	651.1	456.5	
Relati basis	ve Density on an oven-dried = $M_4/(M_1-[M_2-M_3])$	2.59	2.57	2.58
Relation dried I	ve Density on a saturated & surface- basis $= M_1/(M_1-[M_2-M_3])$	2.60	2.59	2.60
Appar	ent Relative Density = M₄/(M₄-[M₂- M₃])	2.62	2.61	2.62
Water	Absorption (% of dry mass) =100(M ₁ - M ₄)/ M ₄	0.5	0.6	0.6

Checked by:

Tested by: KEVIN

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity & Water Absorption Test BS EN 1097: Part 6:2000 BH 06(6.47-6.77M)

 Site: MWACHE W.T.P
 Location: KWALE
 Date Received: 23-07-21

 Material Description: CRUSHED ROCK CORES
 Lab Ref: AGG/RGS-MWACHE/3911
 Sample No: 3911

 Sampled by: REGIONAL GEOPHYSICAL SURVEY
 Source: SITE
 Date Tested: 04-08-21

	TEST NO.	1	2	
M1	The mass of saturated surface dry in (g)	562.0	626.6	
M2	The mass in water containing of saturated sample (g)	336.2	375.4	
МЗ	The mass in water of the empty basket (g)	-	-	
M4	The mass of oven-dried sample in (g)	556.5	620.0	
Relativ basis	ve Density on an oven-dried = M4/(M1-[M2- M3])	2.46	2.47	2.47
Relati dried I	ve Density on a saturated & surface- basis = M ₁ /(M ₁ -[M ₂ - M ₃])	2.49	2.49	2.49
Appar	ent Relative Density = $M_d/(M_4-[M_2-M_3])$	2.53	2.53	2.53
Water	Absorption (% of dry mass) =100(M ₁ - M ₄)/ M ₄	1.0	1.1	1.0

Tested by: KEVIN

Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935

REGIONAL GEOPHYSICAL SURVEY

MWACHE WATER TREATMENT PLANT

Specific Gravity & Water Absorption Test BS EN 1097: Part 6:2000 BH 06(19.0-19.31M)

 Site: <u>MWACHE W.T.P</u>
 Location: <u>KWALE</u>
 Date Received: <u>23-07-21</u>

 Material Description: <u>CRUSHED ROCK CORES</u>
 Lab Ref: <u>AGG/RGS-MWACHE/3913</u>
 Sample No: <u>3913</u>

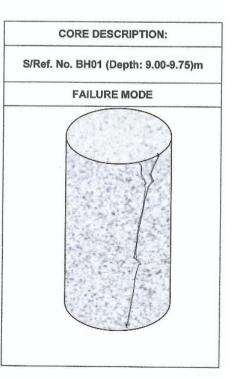
 Sampled by: <u>REGIONAL GEOPHYSICAL SURVEY</u>
 Source: <u>SITE</u>
 Date Tested: <u>04-08-21</u>

	TEST NO.	1	2	
M1	The mass of saturated surface dry in (g)	607.0	729.0	
M2	The mass in water containing of saturated sample (g)	375.2	448.5	
M3	The mass in water of the empty basket (g)	-	-	
M4	The mass of oven-dried sample in (g)	605.8	727.8	
Relati basis	ve Density on an oven-dried = M₄/(M₁-[M₂- M₃])	2.61	2.58	2.60
Relati dried I	ve Density on a saturated & surface- basis = M ₁ /(M ₁ -[M ₂ - M ₃])	2.62	2.59	2.61
Appar	ent Relative Density = $M_4/(M_4-[M_2-M_3])$	2.63	2.61	2.62
Water	Absorption (% of dry mass) =100(M ₁ - M ₄)/ M ₄	0.2	0.2	0.2

Checked by the state of the sta

Tested by: KEVIN

Unconfined Compressive Strength of Rocks

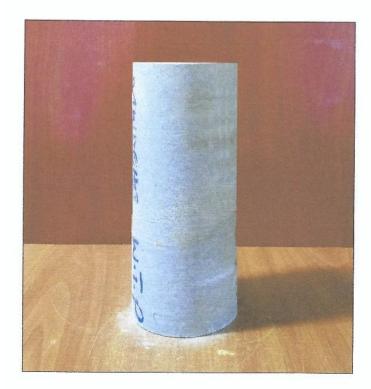

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES ASTM D 7012 - 04

Sample Ref. No		BH01	Weight in Air (g):		1784	Density (kg/m ³)	1	2590
Sampled By:	REGION	IAL GEOPHYS	ICAL SURVEY			Date Tested:	03-08-21	
Client:	REGION	ial geophys ⁄	ICAL Cou	nty: KW	ALE	Lab Ref:	CORE/RGS	-MWACHE/3885
Site:	MWACH	IE WTP	Loc	ation: KW	ALE	Date Received:	23-07-21	

Sample Ref. No.	BH01	Weight in Air (g):	1784	Density (kg/m ³):	2590
Load at Failure (KN) :	384.8	Compressive Strength N/mm ² :	97.2	Remarks:	-
Depth(M):	9.00-9.75m	Core Diameter (mm) :	71	Core Height (mm) :	174

Tested by: KEVIN



Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

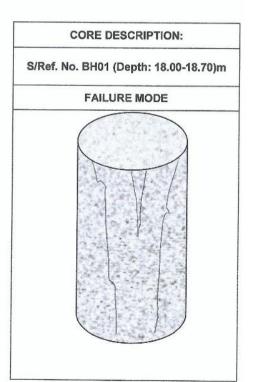
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3886
Sampled By:	REGIONAL GEOPHYSICAL SUR	VEY		Date Tested:	03-08-21

Sample Ref. No.	BH01	Weight in Air (g):	1722	Density (kg/m ³):	2558
Load at Failure (KN) :	391.6	Compressive Strength N/mm ² :	98.9	Remarks:	-
Depth(M):	12.48-13.00m	Core Diameter (mm) :	71	Core Height (mm) :	170

CORE DESCRIPTION:
S/Ref. No. BH01 (Depth: 12.48-13.00)m
FAILURE MODE

Tested by: KEVIN

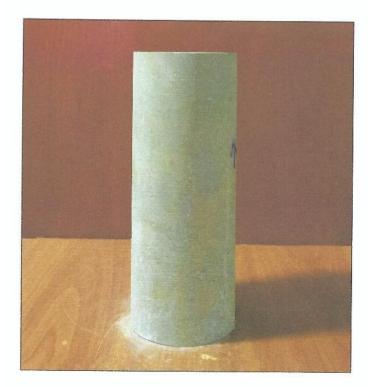

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3887
Sampled By:	ed By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH01	Weight in Air (g):	1784	Density (kg/m ³):	2605
Load at Failure (KN) :	367.4	Compressive Strength N/mm ² :	92.8	Remarks:	-
Depth(M):	18.00-18.70m	Core Diameter (mm) :	71	Core Height (mm) :	173

Tested by: KEVIN



Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

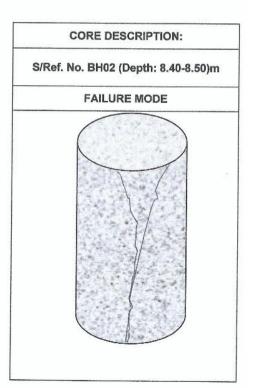
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3889
Sampled By:	ed By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH02	Weight in Air (g):	2681	Density (kg/m ³):	2538
Load at Failure (KN) :	544.4	Compressive Strength N/mm ² :	103.1	Remarks:	-
Depth(M):	8.00 -8.40m	Core Diameter (mm) :	82	Core Height (mm) :	200

	CORE DESCRIPTION:
S/Ref	. No. BH02 (Depth: 8.00-8.40)m
	FAILURE MODE

Tested by: KEVIN

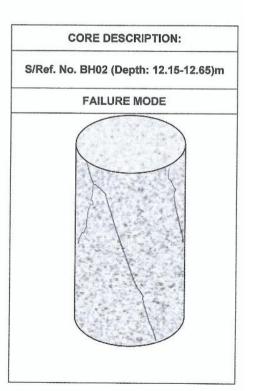

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3890
Sampled By:	ed By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH02	Weight in Air (g):	2365	Density (kg/m³):	2604
Load at Failure (KN) :	556.7	Compressive Strength N/mm ² :	105.4	Remarks:	-
Depth(M):	8.40-8.50m	Core Diameter (mm) :	82	Core Height (mm) :	172

Tested by: KEVIN

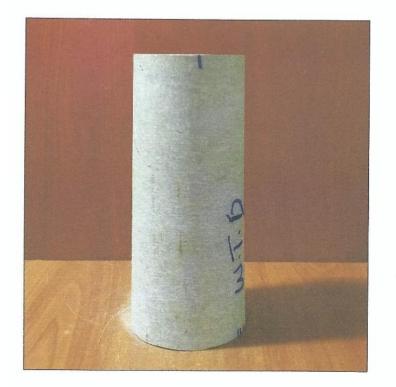

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

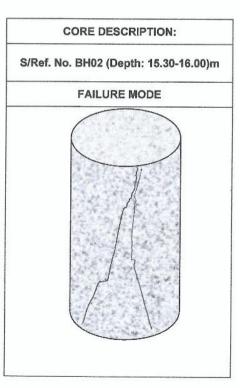
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3891
Sampled By:	REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH02	Weight in Air (g):	2739	Density (kg/m ³):	2619
Load at Failure (KN) :	415.1	Compressive Strength N/mm ² :	78.6	Remarks:	- (a)
Depth(M):	12.15 -12.65m	Core Diameter (mm) :	82	Core Height (mm) :	198

Tested by: KEVIN



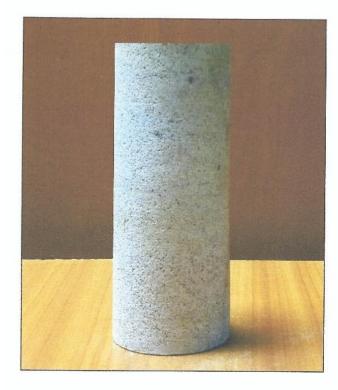

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

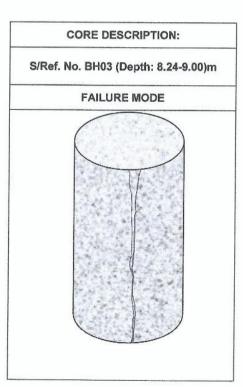
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3892
Sampled By:	REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH02	Weight in Air (g):	2658	Density (kg/m ³):	2568
Load at Failure (KN) :	533.2	Compressive Strength N/mm ² :	101.0	Remarks:	-
Depth(M):	15.30 -16.00m	Core Diameter (mm) :	82	Core Height (mm) :	196

Tested by: KEVIN



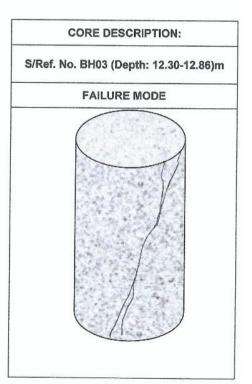

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3894
Sampled By:	ed By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH03	Weight in Air (g):	1796	Density (kg/m ³):	2592
Load at Failure (KN) :	420.5	Compressive Strength N/mm ² :	106.2	Remarks:	-
Depth(M):	8.24 -9.00m	Core Diameter (mm) :	71	Core Height (mm) :	175

Tested by: KEVIN

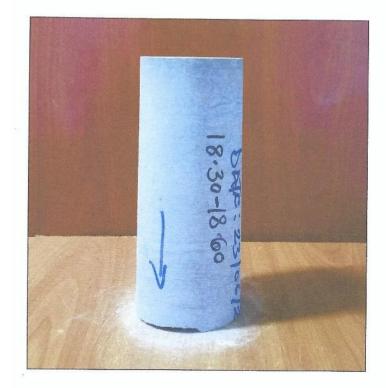

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

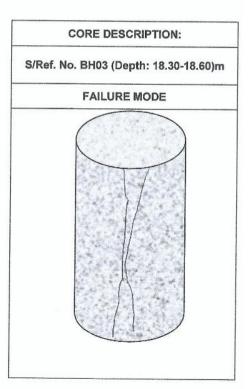
Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3895
Sampled By:	By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH03	Weight in Air (g):	1728	Density (kg/m ³):	2567
Load at Failure (KN) :	410.4	Compressive Strength N/mm ² :	103.7	Remarks:	-
Depth(M):	12.30 -12.86m	Core Diameter (mm) :	71	Core Height (mm) :	170

Tested by: KEVIN



Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

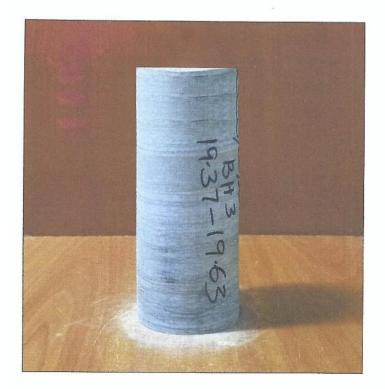

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES ASTM D 7012 - 04

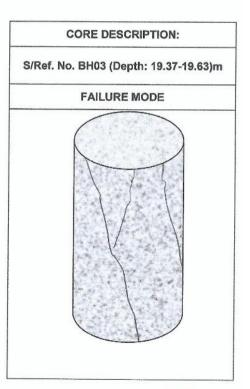
Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3896
Sampled By:	REGIONAL GEOPHYSICAL SURV	/EY	Date Tested:	03-08-21	

Sample Ref. No.	BH03	Weight in Air (g):	1790	Density (kg/m³):	2598
Load at Failure (KN) :	395.3	Compressive Strength N/mm ² :	99.8	Remarks:	-
Depth(M):	18.30 -18.60m	Core Diameter (mm) :	71	Core Height (mm) :	174

192

Tested by: KEVIN



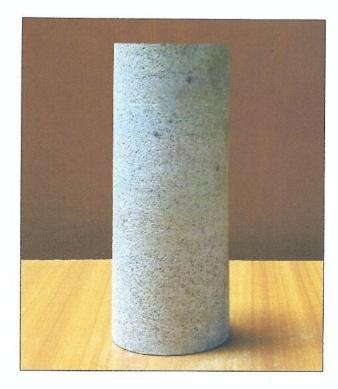

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

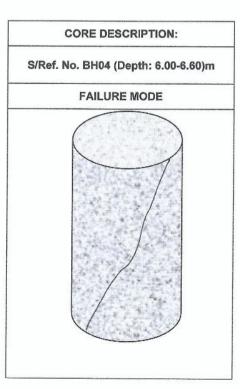
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3897
Sampled By:	ed By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH03	Weight in Air (g):	1450	Density (kg/m³):	2526
Load at Failure (KN) :	378.2	Compressive Strength N/mm ² :	95.5	Remarks:	-
Depth(M):	19.37 -19.63m	Core Diameter (mm) :	71	Core Height (mm) :	145

Tested by: KEVIN


Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi

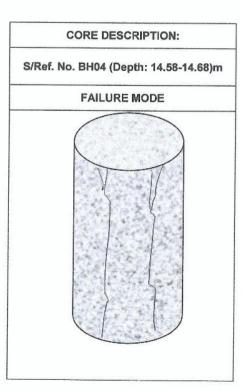

Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES ASTM D 7012 - 04

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3899
Sampled By:	Ied By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH04	Weight in Air (g):	1727	Density (kg/m ³):	2478
Load at Failure (KN) :	294.4	Compressive Strength N/mm ² :	74.4	Remarks:	-
Depth(M):	6.00 -6.60m	Core Diameter (mm) :	71	Core Height (mm) :	176

Tested by: KEVIN

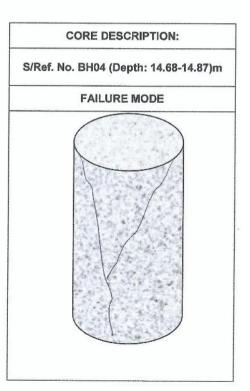

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3900
Sampled By:	d By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH04	Weight in Air (g):	1765	Density (kg/m³):	2562
Load at Failure (KN) :	469.8	Compressive Strength N/mm ² :	118.7	Remarks:	
Depth(M):	14.58 -14.68m	Core Diameter (mm) :	71	Core Height (mm) :	174

Tested by: KEVIN


Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

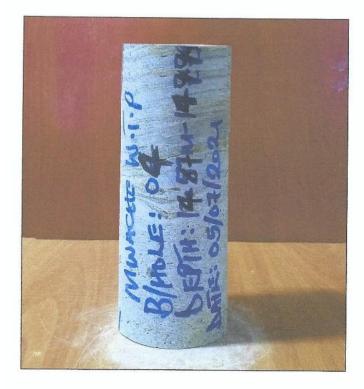
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

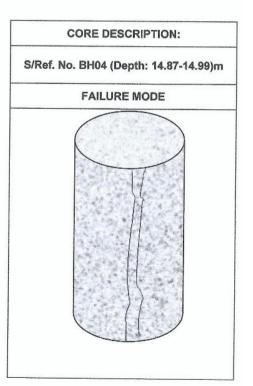
Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3901
Sampled By:	By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH04	Weight in Air (g):	1775	Density (kg/m ³):	2562
Load at Failure (KN) :	522.6	Compressive Strength N/mm ² :	132.0	Remarks:	5 <u>2</u> 7
Depth(M):	14.68 -14.87m	Core Diameter (mm) :	71	Core Height (mm) :	175

Tested by: KEVIN

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620


Nairobi


Kenya

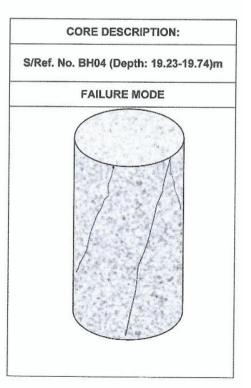
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3902
Sampled By:	ampled By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH04	Weight in Air (g):	1712	Density (kg/m³):	2605
Load at Failure (KN) :	236.7	Compressive Strength N/mm ² :	59.8	Remarks:	-
Depth(M):	14.87 -14.99m	Core Diameter (mm) :	71	Core Height (mm) :	166

Tested by: KEVIN

Email: danellilab3@gmail.com info@danellilab.com

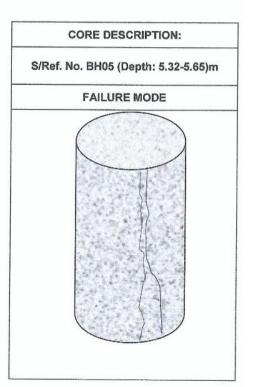

Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3903
Sampled By:	mpled By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH04	Weight in Air (g):	1847	Density (kg/m ³):	2636
Load at Failure (KN) :	327.3	Compressive Strength N/mm ² :	82.7	Remarks:	-
Depth(M):	19.23 -19.74m	Core Diameter (mm) :	71	Core Height (mm) :	177

Tested by: KEVIN

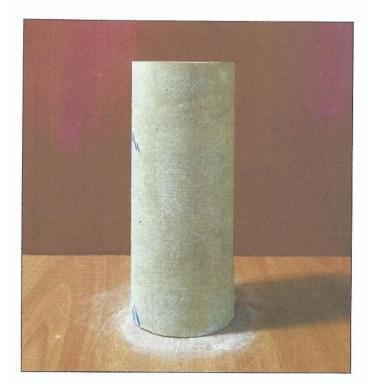

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

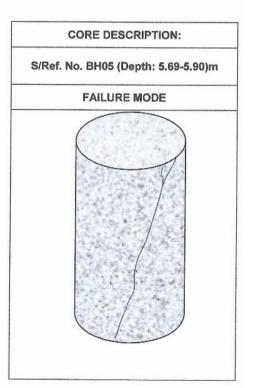
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3905
Sampled By:	ampled By: REGIONAL GEOPHYSICAL SURVEY				03-08-21

Sample Ref. No.	BH05	Weight in Air (g):	1687	Density (kg/m³):	2449
Load at Failure (KN) :	241.7	Compressive Strength N/mm ² :	61.0	Remarks:	-
Depth(M):	5.32 -6.65m	Core Diameter (mm) :	71	Core Height (mm) :	174

Tested by: KEVIN



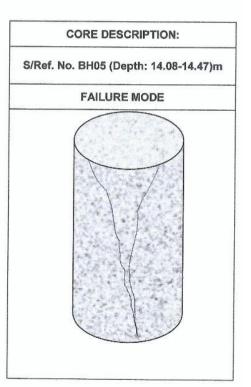

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3906
Sampled By:	ampled By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH05	Weight in Air (g):	1705	Density (kg/m ³):	2475
Load at Failure (KN) :	325.2	Compressive Strength N/mm ² :	82.1	Remarks:	
Depth(M):	5.69 -5.90m	Core Diameter (mm) :	71	Core Height (mm) :	174

Tested by: KEVIN

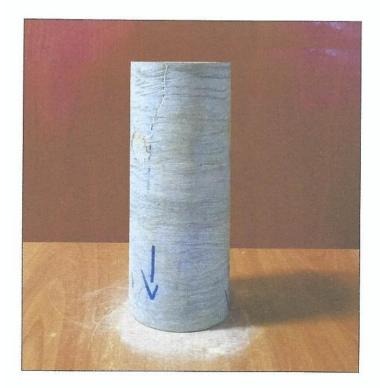

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3907
Sampled By:	npled By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH05	Weight in Air (g):	1600	Density (kg/m ³):	2510
Load at Failure (KN) :	62.1	Compressive Strength N/mm ² :	15.7	Remarks:	-
Depth(M):	14.08 -14.47m	Core Diameter (mm) :	71	Core Height (mm) :	161

Tested by: KEVIN


Head Office & Laboratories:

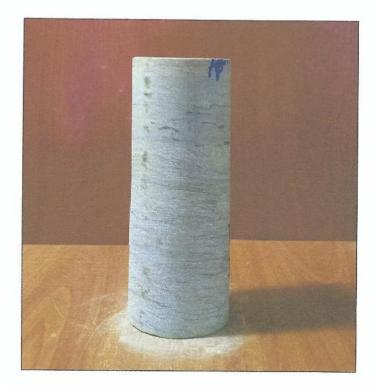
Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

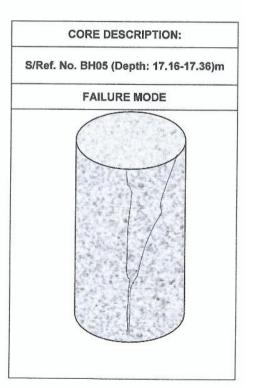
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES ASTM D 7012 - 04

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3908
Sampled By:	mpled By: REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH05	Weight in Air (g):	1797	Density (kg/m³):	2624
Load at Failure (KN) :	481.9	Compressive Strength N/mm ² :	121.7	Remarks:	
Depth(M):	16.36 -16.50m	Core Diameter (mm) :	71	Core Height (mm) :	173

Tested by: KEVIN



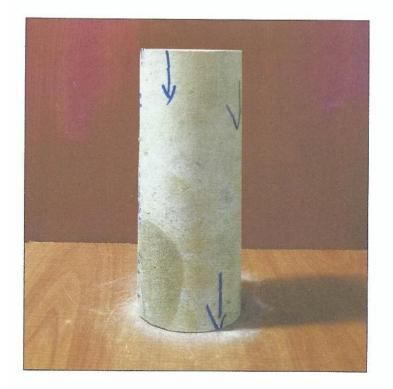

Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

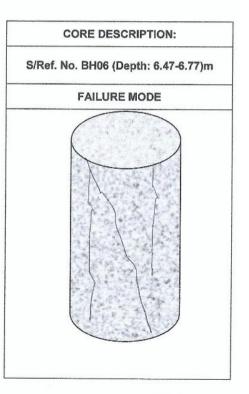
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3909
Sampled By:	REGIONAL GEOPHYSICAL SURVEY			Date Tested:	03-08-21

Sample Ref. No.	BH05	Weight in Air (g):	1889	Density (kg/m³):	2696
Load at Failure (KN) :	460.8	Compressive Strength N/mm ² :	116.4	Remarks:	-
Depth(M):	17.16 -17.36m	Core Diameter (mm) :	71	Core Height (mm) :	177

Tested by: KEVIN




Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

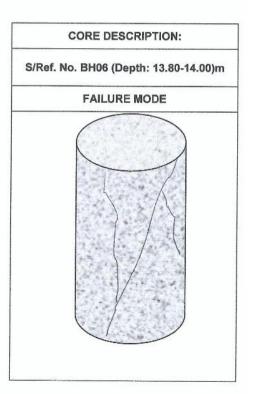
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3911
Sampled By:	REGIONAL GEOPHYSICAL SUR	VEY		Date Tested:	03-08-21

Sample Ref. No.	BH06	Weight in Air (g):	1605	Density (kg/m³):	2371
Load at Failure (KN) :	126.8	Compressive Strength N/mm ² :	32.0	Remarks:	_
Depth(M):	6.47 - 6.77m	Core Diameter (mm) :	71	Core Height (mm) :	171

Tested by: KEVIN

Date Reported: 05-08-21


Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

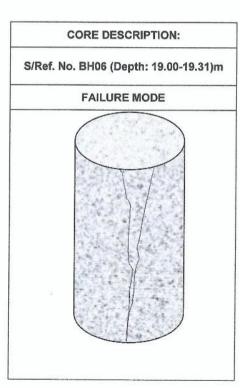
REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3912
Sampled By:	REGIONAL GEOPHYSICAL SUR	VEY		Date Tested:	03-08-21

Sample Ref. No.	BH06	Weight in Air (g):	1624	Density (kg/m ³):	2399
Load at Failure (KN) :	139.0	Compressive Strength N/mm ² :	35.1	Remarks:	-
Depth(M):	13.80 - 14.0m	Core Diameter (mm) :	71	Core Height (mm) :	171

Tested by: KEVIN

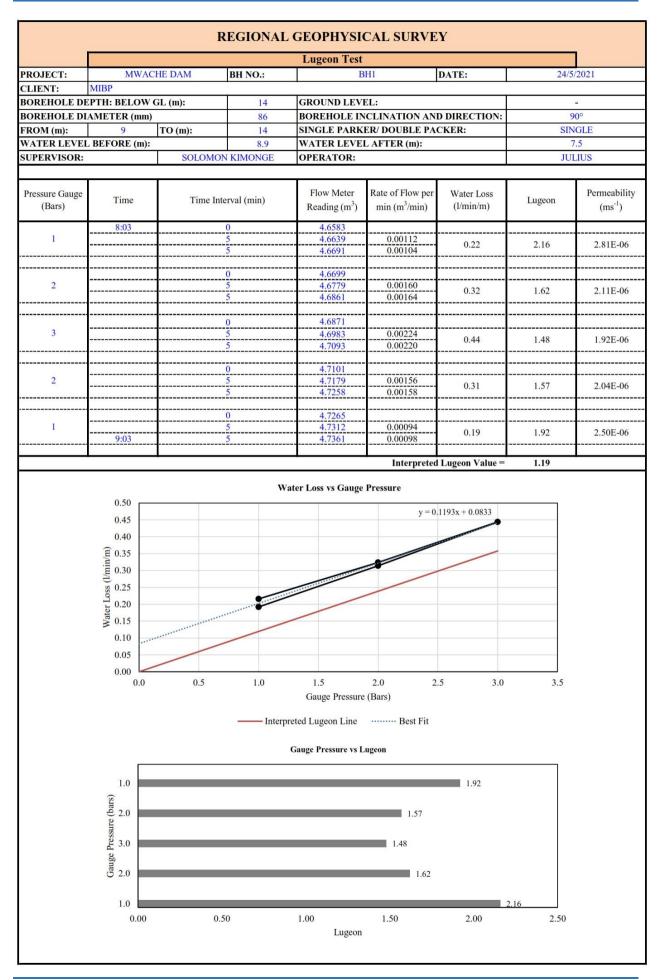
Date Reported: 05-08-21


Independent Materials testing & Inspection Centre Email: danellilab3@gmail.com info@danellilab.com Web site: www.danellilab.com Mob: +254(0) 726 721 935 Head Office & Laboratories: Mombasa Road Pili Trade Centre, Opposite Hilton Garden Inn Hotel P.O. Box 64932 Mobil Plaza 00620 Nairobi Kenya

REGIONAL GEOPHYSICAL SURVEY MWACHE WATER TREATMENT PLANT UNCONFINED COMPRESSIVE STRENGTH OF NATURAL ROCK CORES <u>ASTM D 7012 - 04</u>

Site:	MWACHE WTP	Location:	KWALE	Date Received:	23-07-21
Client:	REGIONAL GEOPHYSICAL SURVEY	County:	KWALE	Lab Ref:	CORE/RGS-MWACHE/3913
Sampled By:	REGIONAL GEOPHYSICAL SUR	VEY		Date Tested:	03-08-21

Sample Ref. No.	BH06	Weight in Air (g):	1760	Density (kg/m ³):	2540
Load at Failure (KN) :	458.4	Compressive Strength N/mm ² :	115.8	Remarks:	-
Depth(M):	19.0 - 19.31m	Core Diameter (mm) :	71	Core Height (mm) :	175



Tested by: KEVIN


Date Reported: 05-08-21

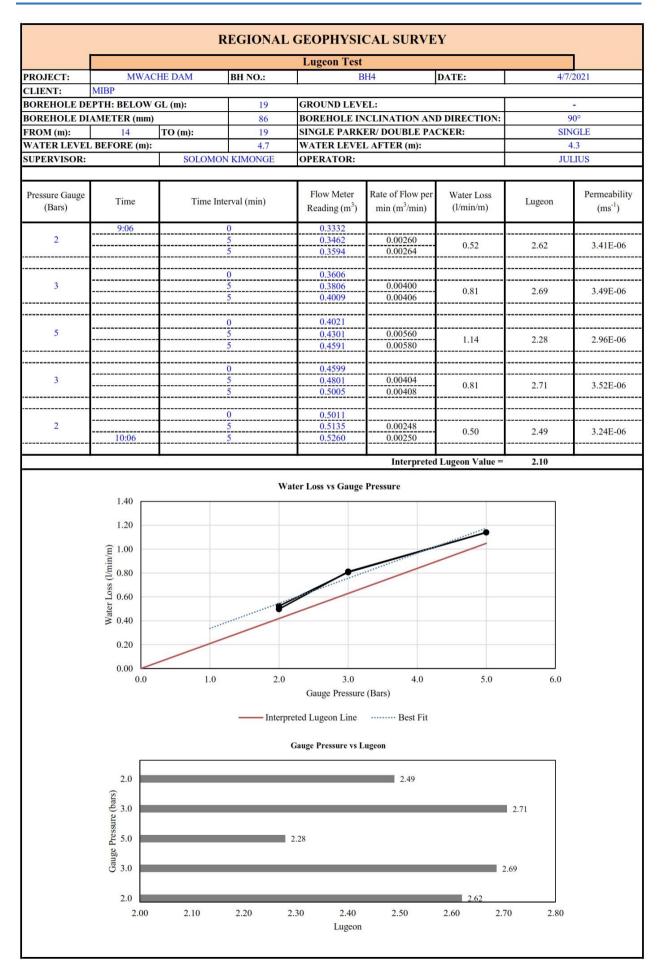
APPENDIX D

					CAL SURVE			
				Lugeon Test	t			
PROJECT:	MWACH	IE DAM	BH NO.:]	BH1	DATE:	23/5	5/2021
CLIENT:	MIBP	196 1969 AV						
	EPTH: BELOW G	L (m):	9	GROUND LEV				-
BOREHOLE DL			86		NCLINATION ANI			90°
FROM (m):		TO (m):	9		ER/ DOUBLE PAG	CKER:	SI	NGLE
WATER LEVEL	BEFORE (m):		7	WATER LEVE	CL AFTER (m):			6
SUPERVISOR:		SOLOMO	N KIMONGE	OPERATOR:			JU	LIUS
					1 1			1
Pressure Gauge (Bars)	Time	Time Int	erval (min)	Flow Meter Reading (m ³)	Rate of Flow per min (m ³ /min)	Water Loss (l/min/m)	Lugeon	Permeability (ms ⁻¹)
	11.07		0					
1	11:07		0 5	4.0410 4.0762	0.00704			
•			5	4.1200	0.00876	1.58	15.80	2.05E-05
2			0	4.1216	0.011442			
2			5	4.1937 4.2639	0.01442 0.01404	2.85	14.23	1.85E-05
				1.2037	0.01404			
			0	4.2654				
3			5	4.3628	0.01948	4.07	13.56	1.76E-05
			5	4.4688	0.02120			
			0	4.4727				·
2			5	4.5313	0.01172	2.20	11.02	1.550.05
			5	4.5920	0.01214	2.39	11.93	1.55E-05
1			0 5	4.5922 4.6211	0.00578			
•	12:07		5	4.6449	0.00476	1.05	10.54	1.37E-05
								1
	3.50 (m 3.00) 2.50 2.00 2.00				-			
	1.50 Mate			/				
	1.00							
	0.50							
	0.00							
	0.00	0.5	1.0	1.5	2.0 2.	.5 3.0	3.5	
			Interp	Gauge Pressur				
			1	Gauge Pressure vs				
	1.0				10.54			
	2.0 Gauge Pressure (bars) 0.2 Gauge Pressure 0.2 Ga				11.93	3		
	sure							
	3.0					13.56		
	l ge							
	0.2 gar					14.23		
	1.0						15.80	
			2012020 00000000	21 (0.023)				
	0.00	2.00	4.00 6.00	8.00	10.00 12.00	14.00 16.	00 18.00	

$ \frac{(Bars)^{-1}}{2} \frac{1100}{1100} \frac{1100}{1100} \frac{100}{100} \frac{14,732}{5} \frac{14,732}{4,7322} \frac{0.00000}{0.00000} \frac{10,12}{0.12} \frac{0.58}{0.58} \frac{1}{0.58} \frac{1}{0.732} \frac{14,17}{0.00056} \frac{10,12}{0.12} \frac{0.58}{0.58} \frac{1}{0.58} \frac{1}{0.5722} \frac{10,00000}{0.00000} \frac{10,19}{0.05} \frac{10,19}{0.05} \frac{10,19}{0.05} \frac{10,19}{0.05} \frac{10,19}{0.05} \frac{10,19}{0.00000} \frac{10,19}{0.05} \frac{10,19}{0.00000} \frac{10,19}{0.00000} \frac{10,19}{0.05} \frac{10,19}{0.05} \frac{10,19}{0.00000} \frac{10,19}{0.00000} \frac{10,19}{0.00000} \frac{10,19}{0.00000} \frac{10,19}{0.00000} \frac{10,22}{0.00000} \frac{10,19}{0.00000} \frac{10,14}{0.00000} \frac{10,22}{0.00000} \frac{10,14}{0.00000} \frac{10,22}{0.00000} \frac{10,14}{0.00000} \frac{10,19}{0.00000} \frac{10,14}{0.00000} \frac{10,19}{0.00000} \frac{10,14}{0.00000} \frac{10,19}{0.00000} \frac{10,14}{0.00000} \frac{10,19}{0.00000} \frac{10,14}{0.000000} \frac{10,14}{0.00000} \frac{10,19}{0.00000} \frac{10,14}{0.00000} \frac{10,10}{0.00000} \frac{10,10}{0.0000} \frac{10,10}{0.00000} \frac{10,10}{0.000$			R	EGIONAL	GEOPHYSI	CAL SURVE	Y		
CLENET: MIRP DEREHOLE DET HE BLOWG (m): 14 GROUND LEVEL DEREHOLE DIAMETER (mm) 86 NOLE PARKER/ DOUBLE PARKER: DEREHOLE DIAMETER (mm) 810 NOLE PARKER/ DOUBLE PARKER: DEREHOLE DIAMETER (mm) 810 NOLE PARKER/ DOUBLE PARKER: NUTER LEVEL AFTER (mm) 810 NOLE PARKER/ DOUBLE PARKER: NUTER LEVEL AFTER (mm) 810 NOLE PARKER/ DOUBLE PARKER: NUTER LEVEL AFTER (mm) 810 NOLE PARKER/ DOUBLE PARKER: NUTER VISIOR: 0100 NOLE 00 PERATOR: 0100 NOLE PARKER/ Pressure Gage Time Time Interval (min) 810 NoLE PARKER/ DOUBLE PARKER/ DOUBLE PARKER/ 14,139 0 4,132 0 4,1323 0,0000 0.12 0.58 0,0000 0.12 0.58 0,0000 0,019 0,05 0,0000 0,019 0,0000 0,019 0,02 0,0000 0,019 0,02 0,0000 0,019 0,02 0,0000 0,019 0,05 0,0000 0,019 0,0000 0,019 0,02 0,0000 0,019 0,02 0,0000 0,019 0,02 0,0000 0,019 0,02 0,0000 0,019 0,02 0,0000 0,019 0,02 0,0000 0,00					Lugeon Test]
BORERIOLE DATE PLE EL		MWACHE DA	М	BH NO.:	E	BH1	DATE:	24/5	5/2021
DOREITOLE DIAMETER (mm) 14 TO (m): 19 SINCLE PARKER DOUBLE PACKER: SINCHE P		FLOPICT			CROUND	ET .			
ROM (m): 14 TO (m): 19 SNOLE PARKEW DOUBLE PACKER: SNOLE SNOLE SUPERVISOR: SOLOMON KIMONGE OPERATOR: JULIUS Pressure Cauge (Baro) Time Time Interval (min) Flow Meter Reading (m) Rate of Flow per min (m)/min) Warer Loss (Uninim) Lugcon P 2 14.17 0 4.7264 0.00006 0.12 0.58 3 0 5 4.7264 0.00006 0.12 0.58 3 0 5 4.7252 0.00004 0.19 0.65 3 0 5 4.7252 0.00136 0.27 0.54 3 0 5 4.7233 0.00136 0.27 0.54 3 0 4.7733 0.00136 0.27 0.54 0.5 3 0 4.7733 0.00126 0.22 0.73 0.73 2 0.3 4.7833 0.00126 0.22 0.73 0.60 3 0.4 0.72			:				DIDECTION		
VATER LEVEL BEFORE (m): 9.1 WATER LEVEL AFTER (m): 8.8 SIPERVISOR: SOLOMON KIMONGE OPERATOR: JULIUS Pressure Gauge (Bnn) Time Time Interval (min) Flow Meer Reading (m ²) Rate of Flow per min (m ² /min) Water Loss (fmin/m) Lageon P. 2 5 4,7223 0.00006 0.12 0.58 0.53 3 0 4,7223 0.00006 0.12 0.54 0.54 5 4,7223 0.00006 0.12 0.54 0.54 5 4,7223 0.000105 0.27 0.54 0.54 3 0 4,7773 0.00112 0.22 0.73 0.54 3 0 4,7233 0.000105 0.27 0.54 0.54 3 0 4,7233 0.00012 0.22 0.73 0.54 2 15017 5 4,7293 0.00074 0.14 0.72 0.50 0.00 0.00 0.00 0.00074 0.14 <td></td> <td></td> <td>n);</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			n);						
SUPERVISOR: SOLOMON KIMONGE OPERATOR: JULIUS Pressure Gauge (Barn) Time Time Interval (min) Flow Meter Reading (m) Rafe of Flow per min (m?min) Water Loss (Jmin/m) Lugeon P 2 1417 0 4.7464 0.00000 0.12 0.58 P 3 0 0.72793 0.00004 0.19 0.65 P 5 0 4.7635 0.00004 0.19 0.65 P 3 0 4.7753 0.00004 0.19 0.65 P 5 0 4.7793 0.00136 0.27 0.54 P 3 0 5 4.7793 0.00136 0.22 0.73 P 2 0 4.7793 0.0012 0.22 0.73 P P 2 0 4.7793 0.0012 0.22 0.73 P 3 0.51 5 4.7793 0.0012 0.14 0.72 2 0.0 <td></td> <td></td> <td>u):</td> <td></td> <td></td> <td></td> <td>-RER.</td> <td></td> <td></td>			u):				-RER.		
Pressure Gauge (Ban) Time Time Interval (min) Flow Meter Reading (m) Nater Loss (min/min) Rate of Flow Per Mater Loss (min/min) Lugeon P 4,764 0,00056 0,12 0,58 3			SOLOMON						
							I		
$\frac{2}{3}$ $\frac{3}{3}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{4,7252}$ $\frac{3}{4,7252}$ $\frac{3}{0,00056}$ $\frac{1}{10}$ $\frac{1}{5}$ $\frac{1}{4,7252}$ $\frac{1}{2,7272}$ $\frac{1}{0,00136}$ $\frac{1}{2}$ $\frac{1}{2,777}$ $\frac{1}{2}$ $\frac{1}{$	ars)		Time Inter	rval (min)	Reading (m ³)			Lugeon	Permeabilit (ms ⁻¹)
$\frac{3}{3} = \frac{5}{5} + \frac{4,732}{4,732} = 0.00056 + 0.12 + 0.03 + 0.19 + 0.65 + 0.14 + 0.72 + 0.00094 + 0.19 + 0.65 + 0.19 + 0.65 + 0.19 + 0.65 + 0.19 + 0.65 + 0.19 + 0.65 + 0.19 + 0.65 + 0.19 + 0.65 + 0.19 + 0.65 + 0.19 + 0.65 + 0.19 + 0.65 + 0.19 + 0.65 + 0.19 + 0.65 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.19 + 0.65 + 0.19 + 0.19 + 0.19 + 0.65 + 0.19 $		4:17			4.7464	0.00050			
$\frac{3}{3} + \frac{3}{3} + \frac{4,7525}{3} + \frac{3}{4,7525} + \frac{3}{0,00004} + \frac{1}{0,19} + \frac{1}{0,65} + \frac{1}{3} + \frac{3}{3} + \frac{1}{4,7525} + \frac{1}{0,00136} + \frac{1}{0,27} + \frac{1}{0,54} + \frac{1}{0,56} + 1$					4.7494		0.12	0.58	7.54E-07
$\frac{3}{5} + \frac{4,725}{6,0000} + \frac{0,000}{0,000} + \frac{0,19}{0,15} + \frac{0,05}{0,0000} + \frac{0,19}{0,0000} + \frac{0,11}{0,00000} + \frac{0,11}{0,000000} + \frac{0,11}{0,00000} + \frac{0,11}{0,00000} + \frac{0,11}{0,00000} + $									
$\frac{3}{5}$ $\frac{3}$									
$\frac{1}{5}$ $\frac{1}$	3		5	5	4.7575		0.19	0.65	8.41E-07
$\frac{5}{3}$ $\frac{5}{3}$ $\frac{47703}{4.77721}$ $\frac{0.00136}{0.00136}$ $\frac{0.27}{0.27}$ $\frac{0.54}{0.00136}$ $\frac{0.22}{0.73}$ $\frac{0.4}{0.72}$ $\frac{1}{0.00112}$ $\frac{0.22}{0.73}$ $\frac{0.4}{0.72}$ $\frac{0.4}{0.72}$ $\frac{0}{0.14}$ $\frac{0.4}{0.72}$ $\frac{1}{0.00070}$ $\frac{0.14}{0.72}$ $\frac{0.4}{0.14}$ $\frac{0.72}{0.00070}$ $\frac{0.14}{0.72}$ $\frac{0.7}{0.00070}$ $\frac{0.14}{0.72}$ $\frac{0.7}{0.00070}$ $\frac{0.14}{0.72}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.72}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.72}$ $\frac{0.7}{0.54}$ $\frac{0.5}{0.55}$ $\frac{0.5}{0.5}$			5		4.7625	0.00100			
$\frac{5}{3}$ $\frac{5}{3}$ $\frac{47703}{4.77721}$ $\frac{0.00136}{0.00136}$ $\frac{0.27}{0.27}$ $\frac{0.54}{0.00136}$ $\frac{0.22}{0.73}$ $\frac{0.4}{0.72}$ $\frac{1}{0.00112}$ $\frac{0.22}{0.73}$ $\frac{0.4}{0.72}$ $\frac{0.4}{0.72}$ $\frac{0}{0.14}$ $\frac{0.4}{0.72}$ $\frac{1}{0.00070}$ $\frac{0.14}{0.72}$ $\frac{0.4}{0.14}$ $\frac{0.72}{0.00070}$ $\frac{0.14}{0.72}$ $\frac{0.7}{0.00070}$ $\frac{0.14}{0.72}$ $\frac{0.7}{0.00070}$ $\frac{0.14}{0.72}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.72}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.54}$ $\frac{0.7}{0.72}$ $\frac{0.7}{0.54}$ $\frac{0.5}{0.55}$ $\frac{0.5}{0.5}$			()	4 7635				
$\frac{3}{2}$ $\frac{3}{1517}$ $\frac{3}{5}$ $\frac{3}{1517}$ $\frac{3}{5}$ $\frac{3}{1517}$ $\frac{3}{5}$ $\frac{3}{1517}$ $\frac{3}{5}$ $\frac{3}{172}$ $\frac{3}{5}$ $\frac{3}{172}$ $\frac{3}{5}$ $\frac{3}{172}$ $\frac{3}{5}$ $\frac{3}{172}$ $\frac{3}{5}$ $\frac{3}{172}$ $\frac{3}{5}$ $\frac{3}{172}$ $\frac{3}{1517}$ $\frac{3}{5}$ $\frac{3}{172}$ $\frac{3}{1517}$ $\frac{3}{5}$ $\frac{3}{172}$ $\frac{3}{1517}$ $\frac{3}{5}$ $\frac{3}{172}$ $\frac{3}{1517}$	5			5		0.00136			
$\frac{3}{2}$ $\frac{3}$			5	5			0.27	0.54	7.07E-07
3 0 0 0 0 0 0 0 0 0 0 0 0 0									
$\frac{1}{2} \qquad \frac{1}{1517} \qquad \frac{5}{5} \qquad \frac{4,2889}{4,2925} \qquad 0.00074}{0.00074} \qquad 0.14 \qquad 0.72 \qquad 0.73 \qquad 0.00074 \qquad 0.14 \qquad 0.72 \qquad 0.72 \qquad 0.00074 \qquad 0.14 \qquad 0.72 \qquad 0.00074 \qquad 0.14 \qquad 0.72 \qquad 0.00076 \qquad 0.14 \qquad 0.72 \qquad 0.14 \qquad 0.14 \qquad 0.72 \qquad 0.14 \qquad 0.14 \qquad 0.72 \qquad 0.14 \qquad 0.14 \qquad 0.14 \qquad 0.72 \qquad 0.14 \qquad$	2					0.00108			
2 2 3 3 47295 0,0007 0,14 0,72 0,0007 0,14 0,72 0,73 0,73 0,72 0,72 0,73 0,72 0,72 0,73 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0							0.22	0.73	9.53E-07
2 1537 153			······		1.7505				
Vater Loss vs Gauge Pressure 0.12 0.14 0.12 0.17 Vater Loss vs Gauge Pressure 0.47 Vater Loss vs Gauge Pressure 0.47 Vater Loss vs Gauge Pressure 0.47 0.12 0.14 0.12 0.14 0.12 0.14					4.7895				
literpreted Lugeon Value = 0.47 Vater Loss vs Gauge Pressure 0.000/0 Uter Loss vs Gauge Pressure 0.000/0 Uter Loss vs Gauge Pressure 0.000/0							0.14	0.72	9.36E-07
Water Loss vs Gauge Pressure 0.30 0.40 0.40 0.40 0.40 0.40 0.40 0.50 0.40 0.54 0.55		5:17)	4.7967	0.00070			
Water Loss vs Gauge Pressure 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.						Interpreted	Lugeon Value =	0.47	
2.0 (step 3.0 5.0 3.0 2.0 0.72 0.73 0.54 0.54 0.55 0.55	0 Water Loss (1/min/m) 0 0 0 0 0	.25 .20 .15 .10 .05 .00	1.0	2.0	3.0 Gauge Pressure	4.0 e (Bars)		6.0	
3.0 0.73 5.0 0.54 0.051 0.65 2.0 0.58					Gauge Pressure vs I	Jugeon			
Store 0.73 0.54 0.54 0.05 0.65 0.058 0.58		2.0						0.72	
2.0									
2.0	bars	3.0						0.73	
2.0	lire (0.15	
2.0	essi	5.0				0.5	4		
2.0	e Pr					0.5			
2.0	aug	3.0					0.75		
	6	5.0					0.65		
	ιc.								
	3								
		0.00	0.10	0.20	0.30 0.40	0.50	0.60 0.70	0.80	
Lugeon					Lugeon				

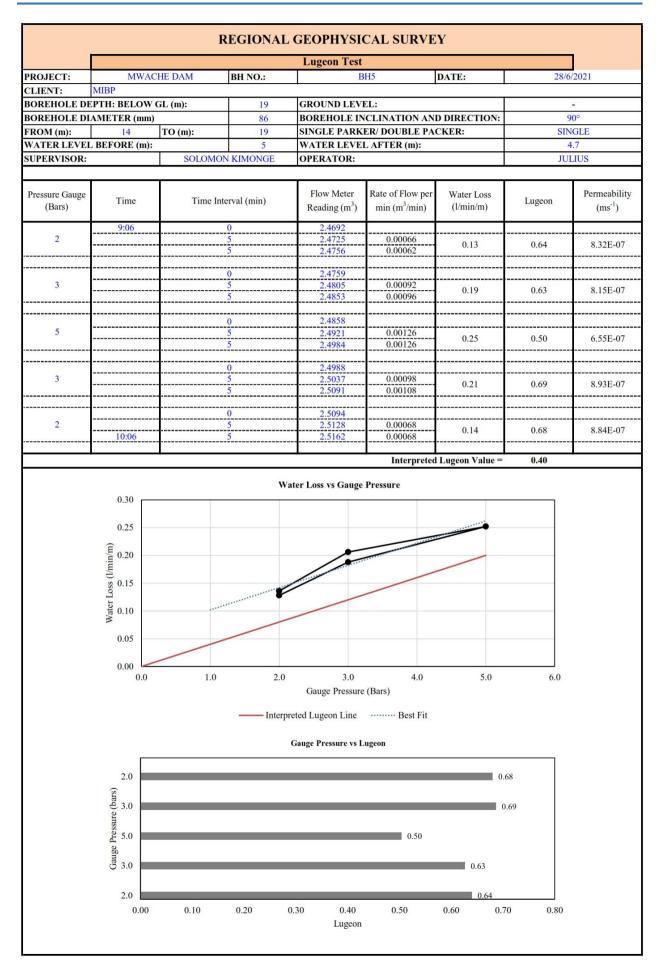
			REGIONAL	GEOPHYSI	CAL SURVE	Y		
				Lugeon Test				1
PROJECT:	MWACH	E DAM	BH NO.:	В	H2	DATE:	22/0	6/2021
CLIENT:	MIBP	- / \	1					
	EPTH: BELOW G AMETER (mm)	L (m):	13 86	GROUND LEV	EL: CLINATION ANI	DIRECTION	-	- 90°
FROM (m):		ТО (m):	13		ER/ DOUBLE PAG			NGLE
	BEFORE (m):	10 (11).	4.9	WATER LEVE				4.5
SUPERVISOR:		SOLOM	ON KIMONGE	OPERATOR:			JU	LIUS
Pressure Gauge (Bars)	Time	Time I	nterval (min)	Flow Meter Reading (m ³)	Rate of Flow per min (m ³ /min)	Water Loss (l/min/m)	Lugeon	Permeability (ms ⁻¹)
1	14:03		0	8.0993 8.1044	0.00102			
1			5	8.1095	0.00102	0.20	2.04	2.65E-06
			0	8.1098	0.001/2			
2			5	8.1179 8.1261	0.00162 0.00164	0.33	1.63	2.12E-06
				0.1201	5,00104			1
			0	8.1269				
3			5	8.1391	0.00244	0.49	1.64	2.13E-06
			3	8.1515	0.00248			
			0	8.1520				
2			5	8.1603	0.00166	0.34	1.68	2.18E-06
			5	8.1688	0.00170			
			0	8.1694				
1			5	8.1746	0.00104	0.21	2.12	2.76E-06
	15:03		5	8.1800	0.00108			
			1.00	ater Loss vs Gauge		Lugeon Value =	1.39	
	0.50 0.40 0.30 0.30 0.10 0.10 0.00 0.0 0.0 0.0 0.0	0.5	1.0	1.5 Gauge Pressure oreted Lugeon Line Gauge Pressure vs L	2.0 2. (Bars) Best Fit	2.12	3.5	
	B 2.0 1.0 0.00	().50	1.00 Lugeon	1.63	2.04	2.50	

				GEOPHYSI				-
DD O UD OT	A RIVA CH	E D I I I	PH NO	Lugeon Test			22/4	12021
PROJECT: CLIENT:	MWACH MIBP	IE DAM	BH NO.:	E E	H2	DATE:	22/6	5/2021
	EPTH: BELOW G	L (m):	18	GROUND LEV	EL:	1		-
	AMETER (mm)	- ()-	86		CLINATION ANI	DIRECTION:		90°
FROM (m):		TO (m):	18		ER/ DOUBLE PAG		SIN	NGLE
WATER LEVEI			5	WATER LEVE	L AFTER (m):			4.8
SUPERVISOR:		SOLOMO	ON KIMONGE	OPERATOR:			JU	LIUS
				-				-
Pressure Gauge (Bars)	Time	Time In	terval (min)	Flow Meter Reading (m ³)	Rate of Flow per min (m ³ /min)	Water Loss (l/min/m)	Lugeon	Permeability (ms ⁻¹)
	17:29		0	8.2127				
2			5	8.2177 8.2227	0.00100 0.00100	0.20	1.00	1.30E-06
				0.2227	0.00100	·		
			0	8.2233				
3			5	8.2304	0.00142	0.29	0.96	1.25E-06
	ł		3	8.2377	0.00146			
			0	8.2382	· · · · · · · · · · · · · · · · · · ·			
5			0 5 5	8.2474	0.00184	0.37	0.75	9.72E-07
			5	8.2569	0.00190	5.57	0.75	J.12E-07
			0	8.2573	·[
3			5	8.2646	0.00146	0.29	0.98	1.27E-06
			5	8.2720	0.00148	0.29	0.96	1.27E-00
			0	8.2722	l			+
2			5	8.2722	0.00104	0.21	1.05	1.275.00
	18:29		5	8.2827	0.00106	0.21	1.05	1.37E-06
				1		Lugeon Value =	0.56	
	0.40 0.35 (minimi) 0.25 0.20 0.15 0.10 0.05 0.00 0.0	1.0	2.0	3.0	4.0	5.0	6.0	
				Gauge Pressure	(Bars)			
				Gauge Pressure vs L				
	2.0						1.05	
	0.6 (pars)					0.98		
	3.0 3.0 5.0 3.0				0.75			
	© 3.0 2.0					0.96		
	0.00	0.20	0.40	0.60	0.80	1.00	1.20	

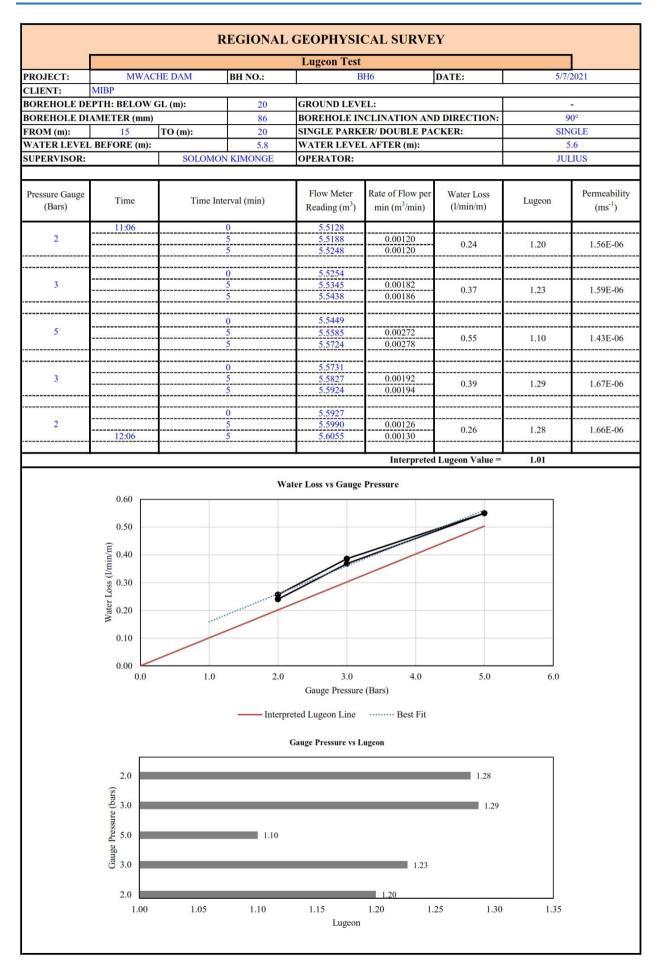

PROJECT: MIBJ BOREHOLE DEPTH BOREHOLE DIAME FROM (m): WATER LEVEL BEF SUPERVISOR: Pressure Gauge (Bars) 1 1 2 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	H: BELOW GL (m): 2 TO (m): FORE (m): SOL/ Time Tin 8:38 SOL/ 0.60 9:38 0.60 0.50	BH NO.: 9 86 9 3.2 OMON KIMONGE me Interval (min) 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	GROUND LEV BOREHOLE IN	BH3 I EL: Image: Constraint of the second secon		SIN	6/2021 - 90° NGLE 2.8 /LIUS Permeability (ms ⁻¹) 3.15E-06 2.26E-06 2.15E-06 2.05E-06 3.12E-06
CLIENT: MIB BOREHOLE DEPTH BOREHOLE DIAME FROM (m): WATER LEVEL BEF SUPERVISOR: Pressure Gauge (Bars) 1 2 3 1 1	H: BELOW GL (m): 2 TO (m): FORE (m): SOL/ Time Tin 8:38 SOL/ 0.60 9:38 0.60 0.50	9 86 9 3.2 OMON KIMONGE me Interval (min) 0 5 5 0 0 5 5 0 5 0 5 5 0 5 5 0 5 5 0 0 5 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5 5 5 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5	BOREHOLE IN SINGLE PARK WATER LEVE OPERATOR: Flow Meter Reading (m ³) 0.4321 0.4321 0.4382 0.4442 0.4442 0.4447 0.4533 0.4621 0.4629 0.4629 0.4629 0.4752 0.4881 0.4959 0.5039 0.5039	EL: SCLINATION AND ER/ DOUBLE PAC L AFTER (m): Rate of Flow per min (m ³ /min) 0.00122 0.00120 0.00176 0.00246 0.00250 0.00156 0.00156 0.00120	D DIRECTION: CKER: Water Loss (l/min/m) 0.24 0.35 0.50 0.32 0.24	SIN JU Lugeon 2.42 1.74 1.65 1.58 2.40	NGLE 2.8 TLIUS Permeability (ms ⁻¹) 3.15E-06 2.26E-06 2.15E-06 2.05E-06
BOREHOLE DIAME TROM (m): WATER LEVEL BEF SUPERVISOR: Pressure Gauge (Bars) 1 2 3 1 2 1 2 1 1 1 1 1	4 TO (m): FORE (m): SOL Time Tin 8:38	86 9 3.2 3.2 OMON KIMONGE 9 me Interval (min) 0 5 5 0 5 5 5 0 5 5 5 0 5 5 5 0 5 5 5 0 5 5 5 0 5 5 5 0 5 5 5	BOREHOLE IN SINGLE PARK WATER LEVE OPERATOR: Flow Meter Reading (m ³) 0.4321 0.4321 0.4382 0.4442 0.4442 0.4447 0.4533 0.4621 0.4629 0.4629 0.4629 0.4752 0.4881 0.4959 0.5039 0.5039	Rate of Flow per min (m³/min) 0.00122 0.00120 0.00176 0.00176 0.00176 0.00176 0.00176 0.00176 0.00176 0.00176 0.00176 0.00176 0.00176 0.00120 0.00120 0.00120 0.00120 0.00120 0.00120 0.00120 0.00120 0.00120 0.00120 0.00120 0.00120	Water Loss (l/min/m) 0.24 0.35 0.32 0.32	SIN JU Lugeon 2.42 1.74 1.65 1.58 2.40	NGLE 2.8 TLIUS Permeability (ms ⁻¹) 3.15E-06 2.26E-06 2.15E-06 2.05E-06
ROM (m):	4 TO (m): FORE (m): SOLI Time Tin 8:38	9 3.2 OMON KIMONGE me Interval (min) 0 5 5 0 0 5 5 0 5 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5	SINGLE PARK WATER LEVE OPERATOR: Flow Meter Reading (m ³) 0.4321 0.4321 0.4382 0.4442 0.4442 0.44447 0.4533 0.4621 0.4629 0.4629 0.4629 0.4752 0.4881 0.4959 0.5039 0.5039	ER/ DOUBLE PAC L AFTER (m): Rate of Flow per min (m ³ /min) 	Water Loss (l/min/m) 0.24 0.35 0.32 0.32	SIN JU Lugeon 2.42 1.74 1.65 1.58 2.40	NGLE 2.8 TLIUS Permeability (ms ⁻¹) 3.15E-06 2.26E-06 2.15E-06 2.05E-06
WATER LEVEL BEF SUPERVISOR: Pressure Gauge (Bars) 1 2 3 2 1 2 3 1	FORE (m): SOLI Time Tin 8:38	3.2 OMON KIMONGE me Interval (min) 0 5 5 0 0 5 5 0 5 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5	WATER LEVE OPERATOR: Image: operation of the system Flow Meter Reading (m ³) 0.4321 0.4321 0.4382 0.4447 0.4442 0.4447 0.44533 0.4621 0.4629 0.4629 0.4629 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	L AFTER (m): Rate of Flow per min (m ³ /min) 0.00122 0.00120 0.00172 0.00176 0.00246 0.00250 0.00156 0.00156 0.00160 0.00120 0.00120 1nterpreted	Water Loss (l/min/m) 0.24 0.35 0.50 0.32 0.24	JU Lugeon 2.42 1.74 1.65 1.58 2.40	2.8 TLIUS Permeability (ms ⁻¹) 3.15E-06 2.26E-06 2.15E-06 2.05E-06
SUPERVISOR: Pressure Gauge (Bars) 1 2 3 2 1	SOL Time Tin 8:38	OMON KIMONGE me Interval (min) 0 5 5 0 0 5 5 5 0 5 5 5 0 5 5 5 5 0 5	OPERATOR: Flow Meter Reading (m ³) 0.4321 0.4321 0.4382 0.4447 0.4442 0.4447 0.4533 0.4621 0.4629 0.4629 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	Rate of Flow per min (m ³ /min) 0.00122 0.00120 0.00172 0.00176 0.00246 0.00250 0.00156 0.00156 0.00160 0.00120 0.00120 Interpreted	(l/min/m) 0.24 0.35 0.50 0.32 0.24	JU Lugeon 2.42 1.74 1.65 1.58 2.40	Permeability (ms ⁻¹) 3.15E-06 2.26E-06 2.15E-06 2.05E-06
Pressure Gauge (Bars)	Time Tin 8:38 	me Interval (min)	Flow Meter Reading (m ³) 0.4321 0.4382 0.4442 0.4442 0.4447 0.4533 0.4621 0.4629 0.4629 0.4629 0.4752 0.4877 0.4881 0.4959 0.5039 0.5039	min (m ³ /min) 0.00122 0.00120 0.00172 0.00176 0.00246 0.00250 0.00250 0.00156 0.00156 0.00160 0.00120 0.00120 Interpreted	(l/min/m) 0.24 0.35 0.50 0.32 0.24	Lugeon 2.42 1.74 1.65 1.58 2.40	Permeability (ms ⁻¹) 3.15E-06 2.26E-06 2.15E-06 2.05E-06
(Bars)	8:38 	0 5 5 5 0 5 5 5 0 5 5 5 5 0 5 5 5 5 5 5	Reading (m ³) 0.4321 0.4382 0.4442 0.4447 0.4533 0.4621 0.4629 0.4629 0.4752 0.4877 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	min (m ³ /min) 0.00122 0.00120 0.00172 0.00176 0.00246 0.00250 0.00250 0.00156 0.00156 0.00160 0.00120 0.00120 Interpreted	(l/min/m) 0.24 0.35 0.50 0.32 0.24	2.42 1.74 1.65 1.58 2.40	(ms ⁻¹) 3.15E-06 2.26E-06 2.15E-06 2.05E-06
(Bars)	8:38 	0 5 5 5 0 5 5 5 0 5 5 5 5 0 5 5 5 5 5 5	Reading (m ³) 0.4321 0.4382 0.4442 0.4447 0.4533 0.4621 0.4629 0.4629 0.4752 0.4877 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	min (m ³ /min) 0.00122 0.00120 0.00172 0.00176 0.00246 0.00250 0.00250 0.00156 0.00156 0.00160 0.00120 0.00120 Interpreted	(l/min/m) 0.24 0.35 0.50 0.32 0.24	2.42 1.74 1.65 1.58 2.40	(ms ⁻¹) 3.15E-06 2.26E-06 2.15E-06 2.05E-06
2	9:38	5 5 5 5 0 0 5 5 5 0 5 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5	0.4382 0.4442 0.4447 0.4533 0.4621 0.4629 0.4629 0.4752 0.4877 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	0.00172 0.00176 0.00246 0.00250 0.00156 0.00160 0.00120 0.00120 Interpreted	0.35	1.74 1.65 1.58 2.40	2.26E-06 2.15E-06 2.05E-06
2 3 2 2 1	0.60	5 0 5 5 0 5 5 0 5 5 5 5 5 5 5 5	0.4442 0.4447 0.4533 0.4621 0.4629 0.4752 0.4877 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	0.00172 0.00176 0.00246 0.00250 0.00156 0.00160 0.00120 0.00120 Interpreted	0.35	1.74 1.65 1.58 2.40	2.26E-06 2.15E-06 2.05E-06
3 2 1	0.60	0 5 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5	0.4447 0.4533 0.4621 0.4629 0.4752 0.4877 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	0.00172 0.00176 0.00246 0.00250 0.00156 0.00160 0.00120 0.00120 Interpreted	0.50	1.65 1.58 2.40	2.15E-06 2.05E-06
3	0.60	5 5 5 5 5 5 5 5 5 5 5	0.4533 0.4621 0.4629 0.4752 0.4877 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	0.00176 0.00246 0.00250 0.00156 0.00160 0.00120 0.00120 Interpreted	0.50	1.65 1.58 2.40	2.15E-06 2.05E-06
3	0.60	5 0 5 5 5 5 5 5 5 5 5	0.4533 0.4621 0.4629 0.4752 0.4877 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	0.00176 0.00246 0.00250 0.00156 0.00160 0.00120 0.00120 Interpreted	0.50	1.65 1.58 2.40	2.15E-06 2.05E-06
2	0.60	0 5 5 0 5 5 5 5 5 5 5 5	0.4629 0.4752 0.4877 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	0.00246 0.00250 0.00156 0.00160 0.00120 0.00120 Interpreted	0.50	1.65 1.58 2.40	2.15E-06 2.05E-06
2	0.60	5 5 5 5 0 5 5 5 5	0.4752 0.4877 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	0.00250 0.00156 0.00160 0.00120 0.00120 Interpreted	0.32	1.58 2.40	2.05E-06
2	0.60	5 5 5 5 0 5 5 5 5	0.4752 0.4877 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	0.00250 0.00156 0.00160 0.00120 0.00120 Interpreted	0.32	1.58 2.40	2.05E-06
2	0.60	5 0 5 5 0 5 5 5 5	0.4877 0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	0.00250 0.00156 0.00160 0.00120 0.00120 Interpreted	0.32	1.58 2.40	2.05E-06
1	0.60	5 5 0 5 5 5	0.4881 0.4959 0.5039 0.5042 0.5102 0.5162	0.00160 0.00120 0.00120 Interpreted	0.24	2.40	
1	0.60	5 5 0 5 5 5	0.4959 0.5039 0.5042 0.5102 0.5162	0.00160 0.00120 0.00120 Interpreted	0.24	2.40	
1	0.60	5 0 5 5	0.5039 0.5042 0.5102 0.5162	0.00160 0.00120 0.00120 Interpreted	0.24	2.40	
l oss (l/min/m)	0.60	0 5 5	0.5042 0.5102 0.5162	0.00120 0.00120 Interpreted			3.12E-06
l oss (l/min/m)	0.60	5	0.5102 0.5162	0.00120 Interpreted			3.12E-06
l oss (l/min/m)	0.60	5	0.5162	0.00120 Interpreted			3.12E-06
Water Loss (J/min/m)	0.60			Interpreted			-
Water Loss (I/min/m)	0.50	W	Vater Loss vs Gauge		Lugeon Value =	1.22	
	0.40 0.30 0.10 0.00 0.0 0.		1.5 Gauge Pressure preted Lugeon Line Gauge Pressure vs I	Best Fit	5 3.0	3.5	
	1.0 2.0 3.0 0.00 0.00	0.50 1.00		1.58 1.65 1.74 2.00	2.40 2.42 2.50	3.00	

		F	REGIONAL	GEOPHYSI	CAL SURVE	Y		
				Lugeon Test]
PROJECT:	MWACH	HE DAM	BH NO.:	В	H3	DATE:	22/0	5/2021
CLIENT:	MIBP			one				
	EPTH: BELOW G	GL (m):	14	GROUND LEV		PIPECTICN		-
FROM (m):	AMETER (mm) 9	TO (m):	86		CLINATION ANI ER/ DOUBLE PAC			90° NGLE
	BEFORE (m):	10 (m):	14 3.9	WATER LEVE		KEK:		3.5
SUPERVISOR:	E DEFORE (III).	SOLOMO	N KIMONGE	OPERATOR:	L'AFTER (m).			LIUS
		Dollowing		of Digit of the				brob
Pressure Gauge (Bars)	Time	Time Int	erval (min)	Flow Meter Reading (m ³)	Rate of Flow per min (m ³ /min)	Water Loss (l/min/m)	Lugeon	Permeability (ms ⁻¹)
	10:15		0	0.5647	0.00204			
1			5	0.5749 0.5853	0.00204 0.00208	0.41	4.12	5.36E-06
				0.5855	0.00208			
			0	0.5860				
2			5	0.6016	0.00312	0.62	3.12	4.06E-06
			5	0.6172	0.00312			
			0	0.6184				
3			5	0.6384	0.00400	0.00	0.77	0.475.05
			5	0.6584	0.00400	0.80	2.67	3.47E-06
2			0 5	0.6589 0.6746	0.00314			
4			5	0.6904	0.00314	0.63	3.15	4.10E-06
			0	0.6908	0.0000			
1	11:15		5	0.7011 0.7136	0.00206 0.00250	0.46	4.56	5.93E-06
	11.15		5	0.7130	0.00230			
	0.80 0.70 (iii) 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0.0	0.5	1.0	1.5 Gauge Pressure	2.0 2. (Bars)	5 3.0	3.5	
			—— Interp	reted Lugeon Line Gauge Pressure vs L	ugeon			
	1.0 (pars) 2.0 3.0 2.0 1.0				3.15 2.67 3.12	4,12	4.56	
	0.00	0.50 1.0	00 1.50	2.00 2.50 Lugeon	3.00 3.50	4.00 4	.50 5.00	

BELOW GL (m) 14 TO (n) 0RE (m): 1 1 TO (n) 1 TO (n)	EFORE (m): SOLOMON	BH NO.: 19 86 19 6.2 KIMONGE erval (min) 0 5 5 0 5 5 5 5	GROUND LEV BOREHOLE IN	EL: SCLINATION AND ER/ DOUBLE PAC		SIN	- 90° NGLE 5.7 LIUS Permeability (ms ⁻¹)
BELOW GL (m) 14 TO (n) 0RE (m): 1 1 TO (n) 1 TO (n)	BP H: BELOW GL (m): IETER (mm) 14 TO (m): EFORE (m): SOLOMON Time Time Into 14:06	19 86 19 6.2 KIMONGE erval (min) 0 5 5 0 5 5 0 5 5	GROUND LEV BOREHOLE IN SINGLE PARK WATER LEVE OPERATOR: Flow Meter Reading (m ³) 0.7299 0.7388 0.7480 0.7492 0.7624	EL: CLINATION AND ER/ DOUBLE PAC L AFTER (m): Rate of Flow per min (m ³ /min) 0.00178	DIRECTION: CKER: Water Loss (l/min/m)	SIN JU Lugeon	- 90° NGLE 5.7 LIUS Permeability
ER (mm) TO (n) 14 TO (n) ORE (m): S Time S	H: BELOW GL (m): IETER (mm) 14 TO (m): EFORE (m): SOLOMON Time Time Time 14:06 I4:06 I4:06 Image: Im	86 19 6.2 KIMONGE erval (min) 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	BOREHOLE IN SINGLE PARK WATER LEVE OPERATOR: Flow Meter Reading (m ³) 0.7299 0.7388 0.7480 0.7492 0.7624	CLINATION AND ER/ DOUBLE PAC L AFTER (m): Rate of Flow per min (m ³ /min)	Water Loss (l/min/m)	SIN JU Lugeon	90° NGLE 5.7 LIUS Permeability
ER (mm) TO (n) 14 TO (n) ORE (m): S Time S	IETER (mm) 14 TO (m): EFORE (m): Time Time Inter 14:06	86 19 6.2 KIMONGE erval (min) 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	BOREHOLE IN SINGLE PARK WATER LEVE OPERATOR: Flow Meter Reading (m ³) 0.7299 0.7388 0.7480 0.7492 0.7624	CLINATION AND ER/ DOUBLE PAC L AFTER (m): Rate of Flow per min (m ³ /min)	Water Loss (l/min/m)	SIN JU Lugeon	90° NGLE 5.7 LIUS Permeability
14 TO (n) DRE (m): 5 Time 5	14 TO (m): EFORE (m): SOLOMON Time Time Integration 14:06	19 6.2 N KIMONGE erval (min) 0 5 5 5 5 0 5 5 5	SINGLE PARK WATER LEVE OPERATOR: Flow Meter Reading (m ³) 0.7299 0.7388 0.7480 0.7492 0.7624	ER/ DOUBLE PAC L AFTER (m): Rate of Flow per min (m ³ /min)	Water Loss (l/min/m)	SIN JU Lugeon	NGLE 5.7 LIUS Permeability
DRE (m):	EFORE (m): SOLOMON Time Time Time Inte	6.2 N KIMONGE erval (min) 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5	WATER LEVE OPERATOR: Flow Meter Reading (m ³) 0.7299 0.7388 0.7480 0.7492 0.7624	L AFTER (m): Rate of Flow per min (m ³ /min)	Water Loss (l/min/m)	JU Lugeon	5.7 LIUS Permeability
Time	Time Time Inte	KIMONGE erval (min) 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5	OPERATOR: Flow Meter Reading (m ³) 0.7299 0.7388 0.7480 0.7492 0.7624	Rate of Flow per min (m ³ /min)	(l/min/m)	JU Lugeon	LIUS Permeability
Time	Time Time Inte	erval (min) 5 5 0 5 5 0 5 5 0 5 5 0 5 5	Flow Meter Reading (m ³) 0.7299 0.7388 0.7480 0.7492 0.7624	min (m ³ /min)	(l/min/m)	Lugeon	Permeability
	14:06	0 5 5 5 5 5 5 5 5 5 5 5 5 5	Reading (m ³) 0.7299 0.7388 0.7480 0.7492 0.7624	min (m ³ /min)	(l/min/m)		
		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.7388 0.7480 0.7492 0.7624	0.00178 0.00184	0.36	1.81	
		5 0 5 5 0 5	0.7480 0.7492 0.7624	0.00178	0.36	1.81	1
		0 5 5 0 5	0.7492 0.7624	0.00184			2.35E-06
		5 5 0 5	0.7624				
		5 0 5	0.7624 0.7758				
		0 5	0.7758	0.00264	0.53	1.77	2.31E-06
		5		0.00268			
		5	0.7772	-			
			0.7954	0.00364			
		5	0.8136	0.00364	0.73	1.46	1.89E-06
·		0	0.8144	0.00272			
		5 5	0.8280 0.8417	0.00272 0.00274	0.55	1.82	2.37E-06
			0.0717	0.002/1			
		0	0.8425	[]			
15.00	15.00	5	0.8519	0.00188	0.38	1.88	2.44E-06
15:06	15:06	5	0.8613	0.00188			
0.60 0.50 0.40 0.30 0.20 0.10	0.20 0.10 0.00	2.0	3.0 Gauge Pressure reted Lugeon Line Gauge Pressure vs L	4.0 e (Bars) Best Fit	5.0	6.0	
[2.0 2.0 3.0 5.0 3.0 3.0					1.81	
	ge Pressure (bars)						0 1.82 1.46 1.77 1.81 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00


				Lugeon Test				1
PROJECT:	MWACH	E DAM	BH NO.:		H4	DATE:	1/7	//2021
CLIENT:	MIBP			1	n (n 47)		117	
	EPTH: BELOW G	L (m):	8	GROUND LEV	EL:			-
OREHOLE DI	AMETER (mm)		86	BOREHOLE IN	CLINATION ANI	D DIRECTION:	9	90°
FROM (m):	3 1	ТО (m):	8	SINGLE PARK	ER/ DOUBLE PAG	CKER:	SI	NGLE
VATER LEVEI	BEFORE (m):		3.3	WATER LEVE	L AFTER (m):			2.8
UPERVISOR:		SOLOM	ION KIMONGE	OPERATOR:			JU	LIUS
								•
Pressure Gauge (Bars)	Time	Time	Interval (min)	Flow Meter Reading (m ³)	Rate of Flow per min (m ³ /min)	Water Loss (1/min/m)	Lugeon	Permeability (ms ⁻¹)
	16:30		0	0.1292				
1			5	0.1337 0.1382	0.00090 0.00090	0.18	1.80	2.34E-06
					0.00090			
			0 5	0.1384				
2				0.1446	0.00124	0.25	1.26	1.64E-06
			5	0.1510	0.00128			
			0	0.1514				·†
3			5	0.1598	0.00168	0.24	1 1 2	1.465.06
			5	0.1682	0.00168	0.34	1.12	1.46E-06
			0	0.1/005				
2			0 5	0.1685 0.1751	0.00132		- <u>1</u> 2 - 22 - 24	
-			5	0.1818	0.00132	0.27	1.33	1.73E-06
1			0	0.1820	0.00001			
1	17:30		5	0.1867 0.1914	0.00094 0.00094	0.19	1.88	2.44E-06
	17.50		<u> </u>	0.1714	0.00074			
	(in in in it is a second secon	0.5	1.0	1.5 Gauge Pressure	2.0 2.		3.5	
			interp	Gauge Pressure vs L				
	1.0 2.0 3.0 2.0 0.2 0.2 0.2 0.2				1.33		1.88	
	0.00	0.20	0.40 0.60	0.80 1.00 Lugeon	1.20 1.40	0 1.60 1	1.80 .80 2.00	

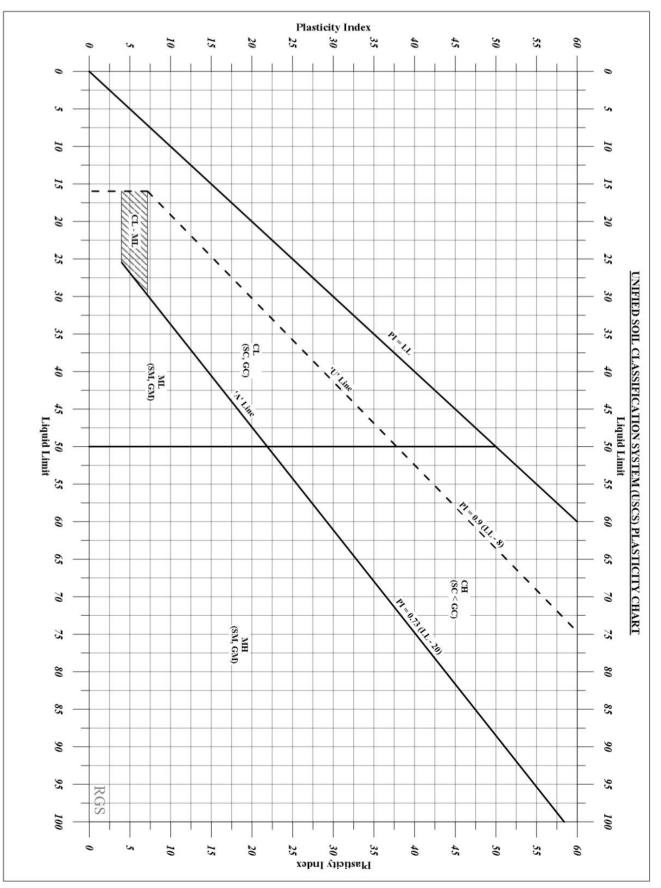
				Lugeon Test				1
PROJECT:	MWAC	HE DAM	BH NO.:		H4	DATE:	3/7	/2021
CLIENT:	MIBP							
	EPTH: BELOW	GL (m):	14	GROUND LEV	EL:			-
	AMETER (mm)	•	86		ICLINATION ANI			90°
FROM (m):	9	TO (m):	14		ER/ DOUBLE PAG	CKER:		IGLE
	L BEFORE (m):		4	WATER LEVE	L AFTER (m):			3.8
SUPERVISOR:		SOLOM	ION KIMONGE	OPERATOR:			JU	LIUS
Pressure Gauge (Bars)	Time	Time	Interval (min)	Flow Meter Reading (m ³)	Rate of Flow per min (m ³ /min)	Water Loss (l/min/m)	Lugeon	Permeability (ms ⁻¹)
	12:10		0	0.2420				
1			5	0.2465 0.2511	0.00090 0.00092	0.18	1.82	2.37E-06
			5	0.2511	0.00092			
			0	0.2517				
2			5	0.2578	0.00122	0.25	1.24	1.61E-06
			5	0.2641	0.00126			
			0	0.2646				
3			0	0.2726	0.00160			
			5	0.2807	0.00162	0.32	1.07	1.40E-06
	_							
2			0	0.2811	0.00120			
2			5 5	0.2875 0.2939	0.00128 0.00128	0.26	1.28	1.66E-06
			ž	0.2733	0.00120			
	 		0	0.2941				
1	10.10		5	0.2988	0.00094	0.19	1.88	2.44E-06
	13:10	+	5	0.3035	0.00094			
	(m) 0.25 							
	0.00	0.5	1.0	1.5 Gauge Pressure	2.0 2. e (Bars)	5 3.0	3.5	
			Interp	reted Lugeon Line	Best Fit			
			Interp	reted Lugeon Line Gauge Pressure vs L				
	1.0		—— Interp				1.88	
	1.0		——— Interp				1.88	
			—— Interp		ugeon		1.88	
			——— Interp				1.88	
			——— Interp		ugeon		1.88	
			——— Interp		ugeon		1.88	
			——— Interp		ugeon 1.28		1.88	
	1.0 Gauge Pressure (bars) 3.0 2.0 2.0		Interp		ugeon		1.88	
	0.2 Gauge Pressure (bars) 3.0 Cauge Dessure (bars) 0.2 Cauge Dessure (bars)		Interp		ugeon 1.28			
		0.20	Interp		ugeon 1.28	0 1.60 1	1.88 1.82 .80 2.00	


				1				-
DOLECT	MULCI	EDUN	DH NO	Lugeon Test			264	(2021
PROJECT: CLIENT:	MWACH MIBP	IE DAM	BH NO.:	E	BH5	DATE:	26/0	5/2021
	EPTH: BELOW G	L (m):	9	GROUND LEV	EL:	1		-
	AMETER (mm)	- (/-	86		CLINATION ANI	DIRECTION:	1	90°
FROM (m):	4	TO (m):	9	SINGLE PARK	ER/ DOUBLE PAG	CKER:	SI	NGLE
WATER LEVEI	BEFORE (m):		3.6	WATER LEVE	L AFTER (m):			3
SUPERVISOR:		SOLOM	ON KIMONGE	OPERATOR:			JU	LIUS
				-				
Pressure Gauge (Bars)	Time	Time	Interval (min)	Flow Meter Reading (m ³)	Rate of Flow per min (m ³ /min)	Water Loss (l/min/m)	Lugeon	Permeability (ms ⁻¹)
	16:30		0	0.2603				
1			5	0.2620 0.2637	0.00034 0.00034	0.07	0.68	8.84E-07
				0.2037	0.00034			
			0 5	0.2639				
2				0.2665	0.00052 0.00054	0.11	0.53	6.89E-07
			5	0.2692	0.00054			+
			0	0.2694				1
3			0 5	0.2732	0.00076	0.18	0.59	7.63E-07
			5	0.2782	0.00100			,
			0	0.2784				+
2			5	0.2812	0.00056	0.11	0.56	7.28E-07
			5	0.2840	0.00056	5.11	0.50	7.201-07
			0	0.2841	·[+
1			5	0.2860	0.00038	0.08	0.76	9.88E-07
	17:30		5	0.2879	0.00038	0.08	0.70	9.88E-07
						Lugeon Value =	0.50	
	0.18 0.16 (muiu 0.14 0.12 0.10 0.00 0.04 0.04 0.02 0.00 0.0	0.5	1.0	1.5 Gauge Pressure	2.0 2. (Bars)		3.5	
			Interp	preted Lugeon Line	······ Best Fit			
				Gauge Pressure vs L	ugeon			
	1.0						0.76	
	10-04-000							
	2.0 Gauge Pressure (bars) 0.2 Gauge Pressure				(0.56		
	ssure							
	ž 3.0					0.59		
	nge							
	<u>5</u> 2.0				0.53			
						0.6	2	
	1.0					0.0		
	0.00	0.10	0.20	0.30 0.40	0.50	0.60 0.70		

1					CAL SURVE	·		-
DOLECT	MULLO		DU NO	Lugeon Test			27/	(2021
PROJECT: CLIENT:	MWAC	HE DAM	BH NO.:	E	BH5	DATE:	27/0	5/2021
	EPTH: BELOW (GL (m):	14	GROUND LEV	EL:	I		-
	AMETER (mm)		86		NCLINATION ANI	DIRECTION:		90°
FROM (m):	9	TO (m):	14		ER/ DOUBLE PAG		SI	NGLE
WATER LEVEI	L BEFORE (m):		4	WATER LEVE	L AFTER (m):			3.7
SUPERVISOR:		SOLON	ION KIMONGE	OPERATOR:			JU	LIUS
Pressure Gauge (Bars)	Time	Time	Interval (min)	Flow Meter Reading (m ³)	Rate of Flow per min (m ³ /min)	Water Loss (l/min/m)	Lugeon	Permeability (ms ⁻¹)
	12:10		0	0.2987				
1			5	0.3015 0.3043	0.00056 0.00056	0.11	1.12	1.46E-06
			²		0.00050			1
			0	0.3046				
2			5	0.3085 0.3121	0.00078 0.00072	0.15	0.75	9.75E-07
			5	0.3121	0.00072			·
	1		0	0.3125	1			1
3			5	0.3174	0.00098	0.20	0.67	8.67E-07
			5	0.3225	0.00102			0.0712-07
			0	0.3227				·
2			5	0.3265	0.00076	0.16	0.78	1.01E-06
			5	0.3305	0.00080	5.10	0.70	1.011-00
		 	0	0.3306	-			+
1			5	0.3336	0.00060	0.12	1 20	1.56E.0C
	13:10		5	0.3366	0.00060	0.12	1.20	1.56E-06
						Lugeon Value =	0.41	
	0.25		w	ater Loss vs Gauge	Pressure]	
	0.25 0.20 (initial 0.15 0.10 0.00 0.0	0.5	1.0		2.0 2.	5 3.0	3.5	
	0.20 (E) (U) (U) (U) (U) (U) (U) (U) (U) (U) (U		1.0	1.5 Gauge Pressure	2.0 2. e (Bars) Best Fit	5 3.0	3.5	
	0.20 (m) 0.15 0.15 0.00 0.00 0.0		1.0	1.5 Gauge Pressure	2.0 2. e (Bars) Best Fit	5 3.0		
	0.20 (m) 0.15 0.15 0.00 0.00 0.0		1.0	1.5 Gauge Pressure	2.0 2. e (Bars) Best Fit			
	0.20 (m) 0.15 0.15 0.00 0.00 0.0		1.0	1.5 Gauge Pressure	2.0 2. e (Bars) Best Fit .ugcon			
	0.20 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		1.0	1.5 Gauge Pressure oreted Lugeon Line Gauge Pressure vs L	2.0 2. e (Bars) Best Fit			

				Lugeon Test				
PROJECT:	MWAC	HE DAM	BH NO.:			DATE:	4/7	/2021
CLIENT:	MIBP		•					
BOREHOLE DE	PTH: BELOW (GL (m):	10	GROUND LEV	EL:			-
BOREHOLE DL	AMETER (mm)		86		CLINATION AN		9	90°
FROM (m):	6	TO (m):	10		ER/ DOUBLE PA	CKER:		NGLE
WATER LEVEL	BEFORE (m):		4.4	WATER LEVE	L AFTER (m):			4.3
SUPERVISOR:		SOLOM	ON KIMONGE	OPERATOR:			JU	LIUS
Pressure Gauge	Time	Time I	nterval (min)	Flow Meter	Rate of Flow per	Water Loss	Lugeon	Permeabilit
(Bars)		1010-010-010-010-010-010-010-010-010-01		Reading (m ³)	min (m ³ /min)	(l/min/m)	0	(ms ⁻¹)
	8:30		0	5.1926				
1			5	5.1966	0.00080	0.21	2.05	2.67E-06
			5	5.2008	0.00084			
			0	5.2012				+
2			5	5.2078	0.00132	0.22	1.66	2165.06
			5	5.2145	0.00134	0.33	1.66	2.16E-06
3			0	5.2149	0.00176			
3			5	5.2237 5.2327	0.00176 0.00180	0.45	1.48	1.93E-06
			<u> </u>	5.4341	0.00100			+
			0	5.2330				
2			5	5.2400	0.00140	0.35	1.75	2.28E-06
			5	5.2470	0.00140			
			0	5.2473				+
1			5	5.2518	0.00090	0.22	2.29	0.00 D 0.0
	9:30		5	5.2564	0.00092	0.23	2.28	2.96E-06
	0.40 (m 0.35 (m 0.30) (m 0.30)			THE OWNER WATER OF THE OWNER OF T				
	0.05							
	0.00	0.5	1.0	1.5	2.0 2.	5 3.0	3.5	
	0.0	0.5	1.0	Gauge Pressure		5.0	5.5	
			—— Interp	preted Lugeon Line	Best Fit			
				Gauge Pressure vs L	ugeon			
	1.0						2.28	
	(su							
	(pg) 2.0					1.75		
	Cauge Pressure (bars) 3.0 0.2 0.2							
	3.0				1.48			
	ge F							
	line 2 0				1.66			
	J 2.0				1.00			
						2.05		
	1.0							
	1.0).50	1.00	1.50	2.05	2.50	

					CAL SURVE			1
DO IECT.	MWACI	IE DAM	DII NO -	Lugeon Test		DATE.	27/6	2021
PROJECT: CLIENT:	MWACH MIBP	IL DAM	BH NO.:	В	BH6	DATE:	27/6	5/2021
	EPTH: BELOW G	L (m):	15	GROUND LEV	EL:			-
	AMETER (mm)	()	86	a second substantial and when the second second	CLINATION ANI	DIRECTION:	9	90°
FROM (m):		TO (m):	15	SINGLE PARK	ER/ DOUBLE PAG	CKER:	SIN	IGLE
	L BEFORE (m):		4.9	WATER LEVE	L AFTER (m):			4.6
SUPERVISOR:		SOLOM	ON KIMONGE	OPERATOR:			JU	LIUS
Pressure Gauge (Bars)	Time	Time I	nterval (min)	Flow Meter Reading (m ³)	Rate of Flow per min (m ³ /min)	Water Loss (l/min/m)	Lugeon	Permeabilit (ms ⁻¹)
	12:22		0	5.3902	0.00100			
1			5	5.3952 5.4002	0.00100 0.00100	0.20	2.00	2.60E-06
			0 5	5.4005	0.001100			
2			5	5.4074 5.4136	0.00138 0.00124	0.26	1.31	1.70E-06
				5.7130	0.00124			+
			0 5	5.4142				
3				5.4231	0.00178	0.36	1.20	1.56E-06
			5	5.4322	0.00182			
			0	5.4326				
2			5	5.4389	0.00126	0.25	1.27	1.65E-06
			5	5.4453	0.00128			
			0	5.4455				+
1			5	5.4507	0.00104	0.21	2.08	2.70E-06
	13:22		5	5.4559	0.00104	5.21	2.00	2.751-00
					T d d d	Lugeon Value =	0.75	
	0.40 0.35 0.30 E 0.25							
	(mu 0.30 0.25 0.20 0.10 0.10							
	≥ 0.10 0.05							
	0.00	0.5	1.0	1.5 Gauge Pressure	2.0 2. e (Bars)	5 3.0	3.5	
			—— Interp	preted Lugeon Line	Best Fit			
	·			Gauge Pressure vs L	Jugeon		1	
	1.0					2.08		
	(pars)			1.	27			
	a solution			1.20				
	2.0 Gauge Pressure (bars) 3.0 C 2.0				1.31			
	Control of the Article of the State							
	1.0					2.00		
		(0.50	1.00	1.50	2.00	2.50	



APPENDIX E

Site Photographs

USCS Plasticity Chart

					Soi	Soil classification
	Criteria for assign	Criteria for assigning group symbols and group names using laboratory tests ^a	names using laborat	ory tests ^a	Group symbol	Group name ^b
Coarse-grained soils	Gravels	Clean Gravels	$C_n \ge 4$ and $1 \le C_c \le$	≤ 3°	GW	Well-graded gravel ^f
More than 50% retained on	More than 50% of coarse fraction retained on No. 4 sieve	Less than 5% fines ^c	$C_u < 4$ and/or $1 > C_c > 3^c$, > 3 ^e	GP	Poorly graded gravel ^f
100. 200 SIEVE		Gravels with Fines	Fines classify as ML or MH	or MH	GM	Silty gravel ^{f,g,h}
		More than 12% fines ^c	Fines classify as CL or CH	or CH	GC	Clayey gravel ^{f,g,h}
	Sands	Clean Sands	$C_u \ge 6$ and $1 \le C_c \le 3^c$	s 3°	SW	Well-graded sand ⁱ
		Less than 5% fines ^d	$C_{\mu} < 6$ and/or $1 > C_{c} > 3^{c}$	$c > 3^{c}$	SP	Poorly graded sand ⁱ
	Ifaction passes INO. 4 sieve	Juan	Fines classify as ML or MH	or MH	SM	Silty sand ^{g,h,i}
		More than 12% fines ^d	Fines classify as CL or CH	or CH	SC	Clayey sand ^{g,h,i}
Fine-grained soils	Silts and Clays	Inorganic	PI > 7 and plots on or above "A" line ^j	r above "A" line ^j	CL	Lean clay ^{k,1,m}
50% or more passes the	Liquid limit less than 50		PI < 4 or plots below "A" line ^J	v "A" line ^j	ML	Silt ^{k,1,m}
No. 200 steve		Organic	Liquid limit—oven dried Liquid limit—not dried	$\frac{\text{lried}}{\text{ried}} < 0.75$	OL	Organic clay ^{k, l, m, n} Organic silt ^{k, l, m, o}
	Silts and Clays	Inorganic	PI plots on or above "A" line	"A" line	CH	Fat clay ^{k,l,m}
	Liquid limit 50 or more		PI plots below "A" line	ne	HM	Elastic silt ^{k,l,m}
		Organic	Liquid limit—oven dried Liquid limit—not dried	$\frac{\text{lried}}{\text{ried}} < 0.75$	НО	Organic clay ^{k, l, m, p} Organic silt ^{k, l, m, q}
Highly organic soils		Primarily organic matter, dark in color, and organic odor	k in color, and organic o	dor	ΡT	Peat
⁴ Based on the material passing the 75-mm. (3-in) sieve. ^b If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name. ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt; GW-GC well-graded gravel with clay; GP-GM poorly graded gravel with silt; GP-GC poorly graded gravel with clay. ^d Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt; SW-SC well- graded sand with clay; SP-SM poorly graded sand with silt: SP-SC poorly graded sand with clay.	the 75-mm. (3-in) sieve. bles or boulders, or ulders, or both" to require dual symbols: with silt; GW-GC i; GP-GM poorly graded ly graded gravel equire dual symbols: th silt; SW-SC well- M poorly graded sand ed sand with clav.	${}^{c}C_{u} = D_{60}/D_{10} C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$ ${}^{f}If \text{ soil contains } \ge 15\% \text{ sand, add "with sand" to group name.}$ ${}^{g}If \text{ fines classify as CL-ML, use dual symbol GC-GM or SC-SM.}$ ${}^{h}If \text{ fines are organic, add "with organic fines" to group name.}$ ${}^{h}If \text{ fines are organic, add "with organic fines" to group name.}$ ${}^{I}If \text{ fines are organic, add "with organic fines" to group name.}$ ${}^{I}If \text{ fines are organic, add "with organic fines" to group name.}$ ${}^{I}If Atterberg limits plot in hatched area, soil is a CL-ML extraction of the same of the s$	"with sand" to ual symbol GC-GM ganic fines" to group 1 "with gravel" to 1 area, soil is a	^k If soil contains 15 to 29% plus No. 200 sand" or "with gravel," whichever is pr ¹ If soil contains \geq 30% plus No. 200, pre sand, add "sandy" to group name. ^m If soil contains \geq 30% plus No. 200, pr gravel, add "gravelly" to group name. ^p PI add "gravelly" to group name. ^p PI \geq 4 and plots on or above "A" line. ^p PI plots below "A" line. ^p PI plots below "A" line.	(5 to 29% plu avel," which avel," which a 00% plus No ≥ 30% plus N elly" to group a plus N elly" to grou elly" to grou ove "A" line A" line.	^k If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant. ^I If soil contains \geq 30% plus No. 200, predominantly sand, add "sandy" to group name. ^m If soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name. ^m PI \geq 4 and plots on or above "A" line. ^m PI \geq 4 or plots below "A" line. ^m PI plots on or above "A" line.

REPUBLIC OF KENYA – COAST WATER WORKS DEVELOPMENT AGENCY MWACHE WATER TREATMENT PLANT GEOTECHNICAL REPORT

References

- 1. Bell F. G. (1978). *Foundation Engineering in Difficult Ground*. Butterworths, London.
- 2. Braja M. D (2005). *Fundamentals of Geotechnical Engineering*, 3rd Ed. Chris Carson.
- 3. Braja M. D (2014). *Principles of Geotechnical Engineering*, 8th Ed. Cengage Learning.
- 4. Braja M. D (2011). Geotechnical Engineering Handbook. J. Ross Publishing, U.S.A
- 5. British Standards Institution (2015). *BS 8004-2015 Code of Practice for Foundations.* London: British Standard Institution.
- 6. British Standards Institution (1999). *BS 5930-1999 Code of Practice for Site Investigations*. London: British Standard Institution.
- 7. Chen F. H. (1975). Foundations on Expansive Soils. Elsevier Scientific Publishing Company, Amsterdam.
- 8. Craig R. F. (2012), Craig's Soil Mechanics 8th Ed. Spon Press, London and New York.
- 9. Carter M. and Bentley S. P. (1991). Correlation of Soil Properties. Pentech Press, London.
- 10. McElroy C. H. and David A. L. (1993). Rock for Erosion Control. ASTM, Philadelphia, PA.
- 11. Ministry of Transport and Communication (1987), *Road Design Manual Part III Materials and Pavement Design for New Roads*.
- 12. Murthy V. N. S. (2001). Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering. CRC Press.
- 13. Peck, R. B.; Hanson, W. E.; and Thornburn, T. H., (1953), *Foundation Engineering*. John Wiley & Sons, New York, 410 p.
- 14. Robert W. D. (2009). Foundation Engineering Handbook Design and Construction with the 2009 International Building Code, 2nd Ed. McGraw Hill, U.S.A.
- Robin F.; Patrick M.; David S.; Graeme B. and Mark F. (2015). *Geotechnical Engineering of Embankment Dams*. Balkema Publishers, Rotterdam.
- Robin F.; Patrick M.; David S.; Graeme B. and Mark F. (2015). *Geotechnical Engineering of Dams*, 2nd Ed. CRC Press, London.
- 17. U.S. Army Corps of Engineers. 1994. *Earth and Rock-Fill Dams General Design and Construction Considerations*. Washington, DC.

Eastings

558320 558340 558360 558380 558400 558420 558440 558460 558480 558500 558520 558540 558560 558580 558600 558620 558640 558660 558680 558700 558720 558740 558760 558780

Eastings

